120 research outputs found

    Exploring the role of nanocellulose as potential sustainable material for enhanced oil recovery:New paradigm for a circular economy

    Get PDF
    Presently, due to growing global energy demand and depletion of existing oil reservoirs, oil industry is focussing on development of novel and effective ways to enhance crude oil recovery and exploration of new oil reserves, which are typically found in challenging environment and require deep drilling in high temperature and high-pressure regime. The nanocelluloses with numerous advantages such as high temperature and pressure stability, ecofriendly nature, excellent rheology modifying ability, interfacial tension reduction capability, etc., have shown a huge potential in oil recovery over conventional chemicals and macro/micro sized biopolymers-based approach. In present review, an attempt has been made to thoroughly investigate the potential of nanocellulose (cellulose nanocrystals/nanofibers) in development of drilling fluid and in enhancement of oil recovery. The impact of various factors such as nanocellulose shape, charge density, inter-particle or inter-fibers interactions after surface functionalization, rheometer geometries, additives, post processing techniques, etc., which provides insight into the attributes of nanocellulose suspension and exemplify their behaviour during oil recovery have also been reviewed and discussed. Finally, the conclusion and challenges in utility of nanocellulose for oilfield applications are addressed. Knowing how to adjust/quantify nanocrystals/nanofibers shape and size; and monitor their interactions might promote their utility in oilfield industry.</p

    Expression and Characterization of Chandipura Virus Proteins

    Get PDF
    Chandipura virus (CHPV) has recently emerged as an extremely lethal human pathogen in the family Rhabdoviridae and is linked to significant encephalitis outbreaks in different parts of India. The biology of CHPV remains less studied to date and the availability of reagents such as purified proteins can enhance research in this direction. In this study, we have overexpressed four of the CHPV proteins namely Nucleoprotein (N), Phosphoprotein (P), Matrix protein (M) and Glycoprotein (G) using three  distinct tags in bacterial system and with changes in inducer concentration, growth and solubilisation conditions successfully purified M and G proteins for the first time along with N and P. Furthermore, the interactions of CHPV M protein with other viral proteins (G, N and P) was investigated using ELISA and GST pull down assays to show the utility of olubilised proteins. The results of both the assays demonstrated that M protein interacts with both G and N proteins, while it does not interact with P protein, in a similar  manner as reported for Vesicular Stomatitis Virus

    Effect of RF Power on Physical and Electrical Properties of Al-doped ZnO Thin Films

    Get PDF
    246-253We deposited Al-doped zinc oxide (AZO) thin films on PTFE flexible substrate by RF sputtering with respect to the power in the range 125-155 W. XRD-pattern showed the preferred c-axis (002) orientation regardless the rf-power, which confirmed the hexagonal wurtzite crystal structure. The dislocation density (δ), and strain (ε) of AZO thin films were determined to be 1.861015-0.741015 m-2, and 85.6×10-3-54.0×10-3, respectively. The AZO film deposited at 135 W showed the smooth and uniform microstructure, which is the highest intensity of XRD-pattern due to smaller grain size. The refractive index (n) increased from 2.24 to 2.34, while the bandgap (Eg), and urbach tail (Eu) decreased from 3.66 to 3.31 eV and 0.33 to 0.22 eV as the RF power increased from 125 to 155 W. The sheet resistance and figure of merit (FOM) of AZO thin films were observed to be the lowest 53.36 /cm and 5.17 10-10 -1 for the sample 135 W

    Elucidating the Interacting Domains of Chandipura

    Get PDF
    The nucleocapsid (N) protein of Chandipura virus (CHPV) plays a crucial role in viral life cycle, besides being an important structural component of the virion through proper organization of its interactions with other viral proteins. In a recent study, the authors had mapped the associations among CHPV proteins and shown that N protein interacts with four of the viral proteins: N, phosphoprotein (P), matrix protein (M), and glycoprotein (G). The present study aimed to distinguish the regions of CHPV N protein responsible for its interactions with other viral proteins. In this direction, we have generated the structure of CHPV N protein by homology modeling using SWISS-MODEL workspace and Accelrys Discovery Studio client 2.55 and mapped the domains of N protein using PiSQRD. The interactions of N protein fragments with other proteins were determined by ZDOCK rigid-body docking method and validated by yeast two-hybrid and ELISA. The study revealed a unique binding site, comprising of amino acids 1–30 at the N terminus of the nucleocapsid protein (N1) that is instrumental in its interactions with N, P, M, and G proteins. It was also observed that N2 associates with N and G proteins while N3 interacts with N, P, and M proteins
    corecore