9 research outputs found

    An investigation of the long-range and local structure of sub-stoichiometric zirconium carbide sintered at different temperatures

    Get PDF
    ZrC1−x (sub-stoichiometric zirconium carbide), a group IV transition metal carbide, is being considered for various high temperature applications. Departure from stoichiometry changes the thermo-physical response of the material. Reported thermo-physical properties exhibit, in some cases, a degree of scatter with one likely contributor to this being the uncertainty in the C/Zr ratio of the samples produced. Conventional, methods for assigning C/Zr to samples are determined either by nominal stochiometric ratios or combustion carbon analysis. In this study, a range of stoichiometries of hot-pressed ZrC1−x were examined by SEM, XRD, Raman spectroscopy and static 13C NMR spectroscopy and used as a basis to correct the C/Zr. Graphite, amorphous, and ZrC1−x carbon signatures are observed in the 13C NMR spectra of samples and are determined to vary in intensity with sintering temperature and stoichiometry. In this study a method is outlined to quantify the stoichiometry of ZrC1−x and free carbon phases, providing an improvement over the sole use and reliance of widely adopted bulk carbon combustion analysis. We report significantly lower C/Zr values determined by 13C NMR analysis compared with carbon analyser and nominal methods. Furthermore, the location of carbon disassociated from the ZrC1−x structure is analysed using SEM and Raman spectroscopy

    Synthesis and sintering of ZrC1-x powders with variable stoichiometry (0

    Get PDF
    ZrC is a potential candidate for high temperature nuclear applications, such as nuclear fuel cladding on TRISO fuels and as a coating on conventional clad in the third and fourth generation of fission nuclear power plants due to its refractoriness, chemical stability, high thermal conductivity, irradiation tolerance as well as low activation under neutron irradiation [1]. The variation in C content in ZrC1-x is known to produce a significant variation in physical properties, such as thermal and electrical conductivity over the range x=0.0-0.2, and a non-monotonic change in lattice parameter that peaks in the same range of stoichiometry (figure 1.) We have investigated the evolution of the distribution of C vacancies with the C content. Usually, ZrC is prepared from ZrO2 followed by a carbothermal reduction process at high temperatures under an inert atmosphere. Recently, a work in our group showed that ZrC1-x for stoichiometry x\u3c0.2 have a non-negligible amount of O, and could be therefore considered oxy-carbides rather than carbides [2]. This may indicate that the previously reported ZrC could also contain O, since that earlier work dates back to the 1970s. Please click Additional Files below to see the full abstract

    On the stoichiometry of zirconium carbide.

    Get PDF
    The dependencies of the enhanced thermomechanical properties of zirconium carbide (ZrCx) with sample purity and stoichiometry are still not understood due to discrepancies in the literature. Multiple researchers have recently reported a linear relation between the carbon to zirconium atomic ratio (C/Zr) and the lattice parameter, in contrast with a more established relationship that suggests that the lattice parameter value attains a maximum value at a C/Zr ~ 0.83. In this study, the relationship between C/Zr atomic ratio and the lattice parameter is critically assessed: it is found that recent studies reporting the thermophysical properties of ZrCx have unintentionally produced and characterised samples containing zirconium oxycarbide. To avoid such erroneous characterization of ZrCx thermophysical properties in the future, we propose a method for the accurate measurement of the stoichiometry of ZrCx using three independent experimental techniques, namely: elemental analysis, thermogravimetric analysis and nuclear magnetic resonance spectroscopy. Although a large scatter in the results (ΔC/Zr = 0.07) from these different techniques was found when used independently, when combining the techniques together consistent values of x in ZrCx were obtained

    Properties of Zirconium Carbide for Nuclear Fuel Applications

    No full text
    Zirconium carbide (ZrC) is a potential coating, oxygen-gettering, or inert matrix material for advanced high temperature reactor fuels. ZrC has demonstrated attractive properties for these fuel applications including excellent resistance against fission product corrosion, fission product retention capabilities, and hydrogen corrosion resistance. However, fabrication of ZrC results in a range of stable sub-stoichiometric and carbon-rich compositions with or without substantial microstructural inhomogeneity, textural anisotropy, and a phase separation, leading to variations in physical, chemical, thermal, and mechanical properties. The effects of neutron irradiation at elevated temperatures, currently only poorly understood, are believed to be substantially influenced by those compositional and microstructural features further adding complexity to understanding the key ZrC properties. This article provides a survey of properties data for ZrC in support of the efforts toward fuel performance modeling and providing guidance for future research on ZrC for fuel applications
    corecore