787 research outputs found

    Increasing the Fisher Information Content in the Matter Power Spectrum by Non-linear Wavelet Weiner Filtering

    Full text link
    We develop a purely mathematical tool to recover some of the information lost in the non-linear collapse of large-scale structure. From a set of 141 simulations of dark matter density fields, we construct a non-linear Weiner filter in order to separate Gaussian and non-Gaussian structure in wavelet space. We find that the non-Gaussian power is dominant at smaller scales, as expected from the theory of structure formation, while the Gaussian counterpart is damped by an order of magnitude on small scales. We find that it is possible to increase the Fisher information by a factor of three before reaching the translinear plateau, an effect comparable to other techniques like the linear reconstruction of the density field.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical Journa

    Ferromagnetic properties of SrRuO3 thin films deposited on the spin-triplet superconductor Sr2RuO4

    Get PDF
    We report magnetic properties of epitaxial thin films of the itinerant ferromagnet SrRuO3 deposited on the cleaved ab surface of the spin-triplet superconductor Sr2RuO4. The films exhibit ferromagnetic transition near 160 K as in the bulk SrRuO3, although the films are under 1.7% compressive strain. The observed magnetization is even higher than that of the bulk SrRuO3. In addition, we newly found that the magnetization relaxation after field removal is strongly anisotropic: two relaxation processes are involved when magnetic domains are aligned along the ab-plane.Comment: 6 pages, 3 figures This paper is accepted for publication in the proceedings of ICM 2015 (Physics Procedia

    Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond

    Get PDF
    Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity

    Clinical Impact of Viral Load on the Development of Hepatocellular Carcinoma and Liver-Related Mortality in Patients with Hepatitis C Virus Infection

    Get PDF
    Aim. This study aimed to assess clinical impact of hepatitis C viral load on the development of hepatocellular carcinoma (HCC) and liver-related mortality in HCV-infected patients. Methods. A total of 111 subjects with chronic HCV infection who were available for serum quantitation of HCV RNA were recruited in this retrospective cohort. Cox-proportional hazards models were used to calculate hazard ratio (HR) of developing HCC and liver-related mortality according to serum HCV RNA titers. Results. HCC was developed in 14 patients during follow-up period. The cumulative risk of HCC development was higher in subjects with high HCV RNA titer (log HCV RNA IU/mL > 6) than subjects with low titer (log HCV RNA IU/mL ≦ 6) (HR = 4.63, P=0.032), giving an incidence rate of 474.1 and 111.5 per 10,000 person-years, respectively. Old age (HR = 9.71, P=0.014), accompanying cirrhosis (HR = 19.34, P=0.004), and low platelet count (HR = 13.97, P=0.009) were other independent risk factors for the development of HCC. Liver-related death occurred in 7 patients. Accompanying cirrhosis (HR = 6.13, P=0.012) and low albumin level (HR = 9.17, P=0.002), but not HCV RNA titer, were significant risk factors related to liver-related mortality. Conclusion. Serum HCV RNA titer may be considered an independent risk factor for the development of HCC but not liver-related mortality

    Delayed Follow-up Visits and Thyrotropin Among Patients With Levothyroxine During the COVID-19 Pandemic

    Get PDF
    Context: The indirect effects of the COVID-19 pandemic on clinical practice have received great attention, but evidence regarding thyroid disease management is lacking. Objective: We aimed to investigate the association between delayed follow-up visits during the pandemic and their serum thyrotropin (TSH) levels among patients being treated with levothyroxine. Methods: This study included 25 361 patients who made a follow-up visit as scheduled (n = 9063) or a delayed follow-up visit ( 4.5 mIU/L, aRR [95% CI] = 1.72 [1.60-1.85]; and TSH > 10 mIU/L, aRR [95% CI] = 2.38 [2.16-2.62]). Conclusion: A delayed follow-up visit during the COVID-19 pandemic was associated with less well-controlled TSH among patients with levothyroxine

    Phlebosclerotic Colitis in a Cirrhotic Patient with Portal Hypertension: The First Case in Korea

    Get PDF
    Phlebosclerotic colitis is a rare form of ischemic colitis characterized by the thickening of the wall of the affected colon due to fibrous degeneration of submucosal layer of colon and fibrotic obstruction of the colono-mesenteric vein, resulting in the disturbance of venous return from the colon. The pathogenic mechanism of this entity remains unknown but chronic liver disease with portal hypertension is maybe thought to be one of the speculated mechanisms. Here we first report the case of surgically confirmed phlebosclerotic colitis, that was in the early stage but showed the aggressive nature, in a 61-yr-old cirrhotic patients with portal hypertension in Korea

    Sicyos angulatus ameliorates atherosclerosis through downregulation of aortic inflammatory responses in apolipoprotein E-deficient mice

    Get PDF
    Sicyos angulatus (SA), a summer annual vine originating from Northeastern USA, is a widely distributed noxious invasive plant. However, the clinical application of SA has not been investigated previously. The purpose of present study was to determine the effects of SA on atherosclerosis and its underlying mechanism. Atherosclerosis was induced by feeding apolipoprotein E-deficient (apoE(-/-)) mice with an atherogenic diet for 8 weeks. SA was administered daily by oral gavage during induction of atherosclerosis. ApoE(-/-) mice treated with SA demonstrated a significant reduction in atherosclerotic plaque area in the whole aorta and aortic sinus compared with vehicle-treated mice. The plasma lipid profiles, including triglyceride, total cholesterol, high-density lipoprotein and low-density lipoprotein, were not affected by SA administration. Of note, gene expression levels of proatherogenic cytokines including tumor necrosis factor alpha (Tnf alpha) and interleukin-6 (Il-6) were significantly decreased in the aorta of SA administered apoE(-/-) mice. In lipopolysaccharide-stimulated RAW 264.7 macrophage cells, SA also inhibited the induction Tnfa, Il-6 and Il-1 beta in a dose-dependent manner. Furthermore, gene expression levels of endothelial cell adhesion molecules, including vascular cell adhesion protein 1 and intercellular adhesion molecule 1 were reduced in the aorta of apoE(-/-) mice treated with SA, which was followed by diminished aortic infiltration of monocytes/macrophages. In conclusion, to the best of our knowledge, this is the first study to demonstrate that SA is able to suppress the development of atherosclerosis by inhibiting the aortic expression of proinflammatory factors in atherogenic diet-fed apoE(-/-) mice. The present study may provide novel insights into the application of the environmentally problematic weed SA as a therapeutically effective natural product for preventing atherosclerosis.N

    phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism

    Get PDF
    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm

    SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion

    Get PDF
    Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4 mice (Salm3, Salm4) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion. © The Author(s) 2016110101sciescopu
    corecore