2,033 research outputs found

    Hydrodynamics of Random-Organizing Hyperuniform Fluids

    Full text link
    Disordered hyperuniform structures are locally random while uniform like crystals at large length scales. Recently, an exotic hyperuniform fluid state was found in several non-equilibrium systems, while the underlying physics remains unknown. In this work, we propose a non-equilibrium (driven-dissipative) hard-sphere model and formulate a hydrodynamic theory based on Navier-Stokes equations to uncover the general mechanism of the fluidic hyperuniformity (HU). At a fixed density, this model system undergoes a smooth transition from an absorbing state to an active hyperuniform fluid, then to the equilibrium fluid by changing the dissipation strength. We study the criticality of the absorbing phase transition. We find that the origin of fluidic HU can be understood as the damping of a stochastic harmonic oscillator in qq space, which indicates that the suppressed long-wavelength density fluctuation in the hyperuniform fluid can exhibit as either acoustic (resonance) mode or diffusive (overdamped) mode. Importantly, our theory reveals that the damping dissipation and active reciprocal interaction (driving) are two ingredients for fluidic HU. Based on this principle, we further demonstrate how to realize the fluidic HU in an experimentally accessible active spinner system and discuss the possible realization in other systems.Comment: Supplementary information can be found at https://www.dropbox.com/s/ksic8v9chw7a7ir/SIpnas.pdf?dl=

    Crystal nucleation of colloidal hard dumbbells

    Full text link
    Using computer simulations we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned CP1 crystal phase is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.Comment: Accepted by J. Chem. Phy

    Self-assembled multi-layer simple cubic photonic crystals of oppositely charged colloids in confinement

    Full text link
    Designing and fabricating self-assembled open colloidal crystals have become one major direction in soft matter community because of many promising applications associated with open colloidal crystals. However, most of the self-assembled crystals found in experiments are not open but close-packed. Here by using computer simulation, we systematically investigate the self-assembly of oppositely charged colloidal hard spheres confined between two parallel hard walls, and we find that the confinement can stabilize multi-layer NaCl-like (simple cubic) open crystals. The maximal layers of stable NaCl-like crystal increases with decreasing the inverse screening length. More interestingly, at finite low temperature, the large vibrational entropy can stabilize some multi-layer NaCl-like crystals against the most energetically favoured close-packed crystals. In the parameter range studied, we find upto 4-layer NaCl-like crystal to be stable in confinement. Our photonic calculation shows that the inverse 4-layer NaCl-like crystal can already reproduce the large photonic band gaps of the bulk simple cubic crystal, which open at low frequency range with low dielectric contrast. This suggests new possibilities of using confined colloidal systems to fabricate open crystalline materials with novel photonic properties

    Entropy stabilizes floppy crystals of mobile DNA-coated colloids

    Full text link
    Grafting linkers with open ends of complementary single-stranded DNA makes a flexible tool to tune interactions between colloids,which facilitates the design of complex self-assembly structures. Recently, it has been proposed to coat colloids with mobile DNA linkers, which alleviates kinetic barriers without high-density grafting, and also allows the design of valency without patches.However, the self-assembly mechanism of this novel system is poorly understood.Using a combination of theory and simulation, we obtain phase diagrams forthe system in both two and three dimensional spaces, and find stable floppy squareand CsCl crystals when the binding strength is strong, even in the infinite bindingstrength limit. We demonstrate that these floppy phases are stabilized by vibrational entropy, and "floppy" modes play an important role in stabilizing the floppy phases for the infinite binding strength limit. This special entropic effect in the self-assembly of mobile DNA-coated colloids is very different from conventional molecular self-assembly, and it offers new axis to help design novel functional materials using mobile DNA-coated colloids.Comment: Accepted in Physical Review Letter

    Driving dynamic colloidal assembly using eccentric self-propelled colloids

    Full text link
    Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of the promising applications in fabrication of dynamic responsive functional materials. Here using computer simulations, we found that in the mixture of passive colloids and eccentric self-propelled active particles, when the eccentricity and self-propulsion of active particles are high enough, the eccentric active particles can push passive colloids to form a large dense dynamic cluster, and the system undergoes a novel dynamic demixing transition. Our simulations show that the dynamic demixing occurs when the eccentric active particles move much faster than the passive particles such that the dynamic trajectories of different active particles can overlap with each other while passive particles are depleted from the dynamic trajectories of active particles. Our results suggest that this is in analogy to the entropy driven demixing in colloid-polymer mixtures, in which polymer random coils can overlap with each other while deplete the colloids. More interestingly, we find that by fixing the passive colloid composition at certain value, with increasing the density, the system undergoes an intriguing re-entrant mixing, and the demixing only occurs within certain intermediate density range. This suggests a new way of designing active matter to drive the self-assembly of passive colloids and fabricate dynamic responsive materials.Comment: Accepted in Soft Matter. Supplementary information can found at https://www.dropbox.com/sh/xb3u5iaoucc2ild/AABFUyqjXips7ewaie2rFbj_a?dl=

    Entropy-Driven Phase Transitions in Colloidal Systems

    Full text link
    This thesis can be divided into two independent parts. In the first part of this thesis, we focus on studying the kinetic pathways of nucleation in colloidal systems. In Chapter 2, we briefly introduce the relevant theory of nucleation, i.e., classic nucleation theory. Then in Chapter 3, we investigate the crystal nucleation in the "simplest" model system for colloids, i.e., the monodisperse hard-sphere system, by using three different simulation methods, i.e., molecular dynamics, forward flux sampling and umbrella sampling simulations. Subsequently, we apply our simulation methods to a more realistic system of colloidal hard spheres in Chapter 4. Furthermore, we study the nucleation in a variety of systems consisting of hard particles, i.e., hard dumbbells (Chapter 5), hard rods (Chapter 6), hard colloidal polymers (Chapter 7) and binary hard-sphere mixtures (Chapter 8). In the second part of this thesis, we study the phase behavior of several colloidal systems. In Chapter 9, we study the equilibrium phase diagram of colloidal hard superballs whose shape interpolates from cubes to octahedra via spheres. We investigate the micellization of asymmetric patchy dumbbells induced by the depletion attraction in Chapter 10.Comment: PhD thesis, Utrecht University, July 2012. 188 page

    Non-Equilibrium Strongly Hyperuniform Fluids of Circle Active Particles with Large Local Density Fluctuations

    Full text link
    Disordered hyperuniform structures are an exotic state of matter having vanishing long-wavelength density fluctuations similar to perfect crystals but without long-range order. Although its importance in materials science has been brought to the fore in past decades, the rational design of experimentally realizable disordered strongly hyperuniform microstructures remains challenging. Here we find a new type of non-equilibrium fluid with strong hyperuniformity in two-dimensional systems of chiral active particles, where particles perform independent circular motions of the radius R with the same handedness. This new hyperuniform fluid features a special length scale, i.e., the diameter of the circular trajectory of particles, below which large density fluctuations are observed. By developing a dynamic mean-field theory, we show that the large local density fluctuations can be explained as a motility-induced microphase separation, while the Fickian diffusion at large length scales and local center-of-mass-conserved noises are responsible for the global hyperuniformity

    Pushing the glass transition towards random close packing using self-propelled hard spheres

    Full text link
    Although the concept of random close packing with an almost universal packing fraction of ~ 0.64 for hard spheres was introduced more than half a century ago, there are still ongoing debates. The main difficulty in searching the densest packing is that states with packing fractions beyond the glass transition at ~ 0.58 are inherently non-equilibrium systems, where the dynamics slows down with a structural relaxation time diverging with density; hence, the random close packing is inaccessible. Here we perform simulations of self-propelled hard spheres, and we find that with increasing activity the relaxation dynamics can be sped up by orders of magnitude. The glass transition shifts to higher packing fractions upon increasing the activity, allowing the study of sphere packings with fluid-like dynamics at packing fractions close to random close packing. Our study opens new possibilities of investigating dense packings and the glass transition in systems of hard particles

    Self-Assembled Chiral Photonic Crystals From Colloidal Helices Racemate

    Full text link
    Chiral crystals consisting of micro-helices have many optical properties while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of colloidal helices racemate. With increasing the density, the system undergoes an entropy-driven co-crystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in the binary honeycomb and square lattices, which are essentially composed by two sets of opposite-handed chiral crystal. Photonic calculations show that these chiral structures can have large complete photonic bandgaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization bandgaps that selectively forbid the propagation of circularly polarized lights of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.Comment: Accepted in ACS Nan

    Linker-mediated self-assembly of mobile DNA-coated colloids

    Full text link
    Developing construction methods of materials tailored for given applications with absolute control over building block placement poses an immense challenge. DNA-coated colloids offer the possibility of realising programmable self-assembly, which, in principle, can assemble almost any structure in equilibrium, but remains challenging experimentally. Here, we propose an innovative system of linker-mediated mobile DNA-coated colloids (mDNACCs), in which mDNACCs are bridged by the free DNA linkers in solution, whose two single-stranded DNA tails can bind with specific single-stranded DNA receptors of complementary sequence coated on colloids. We formulate a mean-field theory efficiently calculating the effective interaction between mDNACCs, where the entropy of DNA linkers plays a nontrivial role. Particularly, when the binding between free DNA linkers in solution and the corresponding receptors on mDNACCs is strong, the linker-mediated colloidal interaction is determined by the linker entropy depending on the linker concentration
    • …
    corecore