18 research outputs found

    Combined optical and electronic sensing of epithelial cells using planar organic transistors.

    Get PDF
    A planar, conducting-polymer-based transistor for combined optical and electronic monitoring of live cells provides a unique platform for monitoring the health of cells in vitro. Monitoring of MDCK-I epithelial cells over several days is shown, along with a demonstration of the device for toxicology studies, of use in future drug discovery or diagnostics applications

    Laser-patterned metallic interconnections for all stretchable organic electrochemical transistors

    Get PDF
    We describe a process allowing the patterning of fully stretchable organic electrochemical transistors (OECTs). The device consists of an active stretchable area connected with stretchable metallic interconnections. The current literature does not provide a complete, simple and accurate process using the standard thin film microelectronic techniques allowing the creation of such sensors. An innovative patterning process based on the combination of laser ablation and thermal release tape ensures the fabrication of highly stretchable metallic lines – encapsulated in polydimethylsiloxane – from conventional aluminium tape. State-of-the-art stretchability up to 70% combined with ultra-low mOhms resistance is demonstrated. We present a photolithographic process to pattern the organic active area onto stretchable substrate. Finally the formulation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) is tuned to achieve an OECT with a maximum stretchability of 38% while maintaining transconductance up to 0.35 mS and channel current as high as 0.2 mA

    Conformable, Stretchable Sensor To Record Bladder Wall Stretch

    Get PDF
    A soft, conformable, biocompatible strain sensor based on ultra-thin stretchable electronics is reported. The sensor comprises gold thin films patterned on a 50 μm thick polyurethane substrate to produce resistive-based strain sensors for monitoring bladder stretch. The sensor responds linearly as a function of strain from 0 to 50%, with an increasing sensitivity as a function of sensor length. The sensor displays good stability with very little hysteresis when it is subjected to cycling between 0 and a maximum strain of 50%, with the largest deviation between 0 and 50% strain of ∼19% after 100 cycles attributed to the sensor with the longest length (6 mm) because it physically stretches by a greater distance than sensors with a shorter length. “Breaking” tests on the sensor reveal that shorter sensors can withstand higher maximum strains than longer sensors. A biocompatible hydrogel adhesive is used to attach sensors in vitro to the outside wall of a pig’s bladder, and sensor performance is studied with respect to repeated bladder filling and emptying to investigate stretch changes. By monitoring bladder stretch and thus volume noninvasively, the sensor provides a route for developing new treatment options for various urological conditions

    Advances in flexible and soft electronics

    No full text
    10.1063/1.5095596APL Materials733120

    Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications.

    No full text
    For many years there has been a strong research interest in soft electronics for artificial skin applications. However, one challenge with stretchable devices is the limited availability of high performance, stretchable, electrical conductors and semiconductors that remain stable under strain. Examples of such electronic skin require excessive amounts of wires to address each sensing element-compression force and strain-in a conventional matrix structure. Here, we present a new process for fabricating artificial skin consisting of an optical waveguide architecture, enabling wide ranging sensitivity to external mechanical compression and strain. The manufacturing process allows design of a fully stretchable polydimethylsiloxane elastomer waveguide with embedded gratings, replicated from low cost DVD-Rs. This optical artificial skin allows the detection of compression forces from 0 to 3.8 N with controllable sensitivity. It also permits monitoring of elongation deformations up to 135%. This type of stretchable optical sensor is highly robust, transparent, and presents a large sensing area while limiting the amount of wires connecting to the sensor. Thus, this optical artificial skin presents far superior mechanical properties compared to current electronic skin

    Compact and High Performance Wind actuated venturi triboelectric energy harvester

    Get PDF
    International audienceThe growing need for alternative sources to power Internet of Things and autonomous devices has led to many energy harvesting solutions from ambient energy sources. Use of batteries requires complementary energy source for extending the lifetime of the device. In recent times, triboelectric nanogenerators have gained significant attention in charging applications through ambient energy harvesting field due to their simplicity, efficiency and adaptability to many device configurations in nature. It is deemed to sustainably address power for autonomous smart applications in various environmental conditions. In this work, a state-of-the-art triboelectric nanogenerator based on wind actuated venturi design system is demonstrated in sync with the smart system evolution for powering various sensor nodal network. Using natural wind, the 3D printed wind actuated venturi triboelectric energy harvester converts ambient mechanical energy into electricity. This simple and compact device produces an optimum average power of 1.5 mW and produces a maximum output power density of 2850 mW.m-2 (peak power output of 4.5 mW), which is much higher than the existing reports that use larger surface area at higher wind velocity. Extensive material testing and future implementation in an array of applications aids for environment friendly energy production and increase the role of triboelectric nanogenerator in autonomous applications

    Optimization of a Planar All-Polymer Transistor for Characterization of Barrier Tissue

    No full text
    International audienceThe organic electrochemical transistor (OECT) is a unique device that shows great promise for sensing in biomedical applications such as monitoring of the integrity of epithelial tissue. It is a label-free sensor that is amenable to low-cost production by roll-to-roll or other printing technologies. Herein, the optimization of a planar OECT for the characterization of barrier tissue is presented. Evaluation of surface coating, gate biocompatibility and performance, and optimization of the geometry of the transistor are highlighted. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), which is used as the active material in the transistor, has the added advantage of allowing significant light transmission compared to traditional electrode materials and thus permits high-quality optical microscopy. The combination of optical and electronic monitoring of cells shown herein provides the opportunity to couple two very complementary techniques to yield a low-cost method for in vitro cell sensing
    corecore