11 research outputs found

    Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers

    Get PDF
    International audienceThe ability to precisely control the thermal conductivity (κ) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of κ of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low κ are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as ∼15 nm. Single-barrier thermal resistances between 2 and 4×10−9 m2 K W−1 were attained, resulting in a room-temperature κ down to about 0.9 W m−1 K−1, in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green’s function simulations

    Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy

    Get PDF
    Bi2Te3 is well-known for its utility in thermoelectrical applications and more recently as topological insulator. Its nanostructuration has attracted plenty of attention because of its potential capacity to reduce thermal conductivity. Here, we have grown a composite sample made of a Bi2Te3 nanowires (NWs) array embedded in an alumina matrix. We have then performed scanning thermal microscopy (SThM) in a 3ω configuration to measure its equivalent thermal resistance. Using an effective medium model, we could then estimate the mean composite thermal conductivity as well as the thermal conductivity of the NWs to be, respectively, (λC) = (1.68 +/- 0.20) W/mK and (λNW) = (1.37 +/- 0.20) W/mK, showing a slight thermal conductivity reduction. Up to now, there have been two main techniques reported in literature to evaluate the thermal conductivity of nanostructures: the use of a thermal microchip to probe a single NW once its matrix has been dissolved or the probing of the whole NWs array embedded in a matrix, obtaining the thermal conductivity of the whole as an effective medium. However, the 3ω-SThM presented here is the only technique able to measure the thermal conductivity of single NWs embedded in a matrix as well as the thermal conductivity of the composite locally. This technique is more versatile and straightforward than other methods to obtain the thermal conductivity of nanostructures.Nano-engineered high performance Thermoelectric Energy Conversion device
    corecore