6 research outputs found

    Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels

    Get PDF
    In contrast to marine ecosystems, the toxicity impact of microplastics in freshwater environments is poorly understood. This contribution reviews the literature on the range of effects of microplastics across and between trophic levels within the freshwater environment, including biofilms, macrophytes, phytoplankton, invertebrates, fish and amphibians. While there is supporting evidence for toxicity in some species e.g. growth reduction for photoautotrophs, increased mortality for some invertebrates, genetic changes in amphibians, and cell internalization of microplastics and nanoplastics in fish; other studies show that it is uncertain whether microplastics can have detrimental long-term impacts on ecosystems. Some taxa have yet to be studied e.g. benthic diatoms, while only 12% of publications on microplastics in freshwater, demonstrate trophic transfer in foodwebs. The fact that just 2% of publications focus on microplastics colonized by biofilms is hugely concerning given the cascading detrimental effects this could have on freshwater ecosystem function. Multiple additional stressors including environmental change (temperature rises and invasive species) and contaminants of anthropogenic origin (antibiotics, metals, pesticides and endocrine disruptors) will likely exacerbate negative interactions between microplastics and freshwater organisms, with potentially significant damaging consequences to freshwater ecosystems and foodwebs

    Assessing the risk and consequence of engineered nano-scale zinc oxide in phytological and bacterial systems

    No full text
    With the increased usage and production of engineered nanoparticles (ENPs), entry into the environment and hence contact with plant root systems is inevitable. Nano zinc oxide (nZnO) is widely used in commercial products, such as sunscreens, paints and coatings due to its high antimicrobial properties and wide electrical band-gap. Disposal down drains and into greywater leads to particle entry into the environment via waste water systems. Here, ENPs could potentially interact with plant root systems, which may lead to uptake, translocation and accumulation within plant tissues, and in the case of edible crops have consequences on human health. This study aimed to identify mechanisms of toxicity by employing whole-cell biosensors in conjunction with model bacteria and plant species. Furthermore, zeta potential (ZP), particle size, reactive oxygen species (ROS) release and solubility of the particles were determined and linked to both plant and bacterial toxicity. In Escherichia coli bacteria, it was demonstrated that growth inhibition from nano-scale ZnO treatment was similar to that from the bulk-scale ZnO and ionic zinc treatments, with the concentrations leading to 50 % inhibition (IC50) demonstrated to be 251, 282 and 298 mg/L for bulk, nano-scale and ZnSO4, respectively. It was demonstrated that the mode of nZnO toxicity in E. coli was bacteriostatic rather than bacteriotoxic. In barley plants, biomass was negatively impacted by up to 50 %, and significantly more zinc was able to enter root tissues as a result of hydroponic nZnO treatment, with 47 mg/L zinc detected in root tissues after 7 days treatment with 500 mg/L nZnO. Comparison of particle characteristics revealed that ROS, solubility, ZP, size and concentration were involved in toxicity, with ZP (charge) identified as a key parameter in both plant and bacterial toxicity

    Assessing the risk and consequence of engineered nano-scale zinc oxide in phytological and bacterial systems

    No full text
    With the increased usage and production of engineered nanoparticles (ENPs), entry into the environment and hence contact with plant root systems is inevitable. Nano zinc oxide (nZnO) is widely used in commercial products, such as sunscreens, paints and coatings due to its high antimicrobial properties and wide electrical band-gap. Disposal down drains and into greywater leads to particle entry into the environment via waste water systems. Here, ENPs could potentially interact with plant root systems, which may lead to uptake, translocation and accumulation within plant tissues, and in the case of edible crops have consequences on human health. This study aimed to identify mechanisms of toxicity by employing whole-cell biosensors in conjunction with model bacteria and plant species. Furthermore, zeta potential (ZP), particle size, reactive oxygen species (ROS) release and solubility of the particles were determined and linked to both plant and bacterial toxicity. In Escherichia coli bacteria, it was demonstrated that growth inhibition from nano-scale ZnO treatment was similar to that from the bulk-scale ZnO and ionic zinc treatments, with the concentrations leading to 50 % inhibition (IC50) demonstrated to be 251, 282 and 298 mg/L for bulk, nano-scale and ZnSO4, respectively. It was demonstrated that the mode of nZnO toxicity in E. coli was bacteriostatic rather than bacteriotoxic. In barley plants, biomass was negatively impacted by up to 50 %, and significantly more zinc was able to enter root tissues as a result of hydroponic nZnO treatment, with 47 mg/L zinc detected in root tissues after 7 days treatment with 500 mg/L nZnO. Comparison of particle characteristics revealed that ROS, solubility, ZP, size and concentration were involved in toxicity, with ZP (charge) identified as a key parameter in both plant and bacterial toxicity.This thesis is not currently available via ORA

    A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh

    No full text
    A new multibranch Integrated Catchment (INCA) model INCA-Metals has been developed to simulate the impact of tannery discharges on river systems. The model accounts for the key chemical reaction kinetic processes operating as well as sedimentation, resuspension, dilution, mixing and redistribution of pollutants in rivers downstream of tannery discharge points and for mine discharges or acid rock drainage sites. The model is dynamic and simulates the daily behaviour of hydrology and eight metals, including cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium, as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, tributaries and instream river behaviour. The model can also account for diffuse pollution from rural runoff as well as point sources from effluent and trade discharges. The model has been applied to the new Savar tannery complex on the Dhaleshwari River system in Bangladesh to assess the impacts on pollution levels in the river system and to evaluate a set of treatment scenarios for pollution control, particularly in the dry season. It is shown that the new effluent treatment plant at Savar needs to significantly improve its operation and treatment capability in order to alleviate metal pollution in the downstream Dhaleshwari River System and also protect the Meghna River System that falls in the Bay of Bengal

    Modelling microplastics in the River Thames: sources, sinks and policy implications

    Get PDF
    With widespread, long-term historical use of plastics and the presence of microplastics in a range of new and existing products, there is rising concern about their potential impacts on freshwater ecosystems. Understanding how microplastics are transported and distributed along river systems is key to assessing impacts. Modelling the main flow dynamics, mixing, sedimentation and resuspension processes is essential for an understanding of the transport processes. We use the new, processed based, dynamic, integrated catchments (INCA) microplastics model and apply this to the whole of the freshwater catchment of the River Thames, UK, to evaluate inputs, loads and concentrations along the river system. Recent data from UK water industry studies on microplastics in effluent discharges and sewage sludge disposal has been utilised to drive the INCA microplastics model. Predicted concentrations and microplastic loads moving along the river system are shown to be significant, with a build-up of concentrations along the river, with increasing deposition on the riverbed. The potential impacts on aquatic ecosystems are evaluated and a review of policy implications is explored
    corecore