109 research outputs found

    Constraints on the applicability of the organic temperature proxies UK'37, TEX86 and LDI in the subpolar region around Iceland

    Get PDF
    The Supplement related to this article is available online at doi:10.5194/bg-12-6573-2015-supplement.Subpolar regions are key areas for studying natural climate variability due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37; TEX86; and the long-chain diol index, LDI) regarding their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long-chain alkyl diols were below the detection limit at most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes, i.e., high fluxes of alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) were measured during late spring and during summer and high fluxes of long-chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3 °C for UK'37) and positive (up to 5 °C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86-derived temperatures correspond with both annual and winter mean 0–200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols suggest that Proboscia diatoms are the major sources of long-chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.This work was supported by the Earth and Life Sciences Division of the Netherlands Organization for Scientific Research (NWO-ALW) by a grant (ALW 820.01.013) to J. S. Sinninghe Damsté. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7/2007-2013) ERC grant agreement 226600

    Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature

    Get PDF
    Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but have also revealed uncertainty about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors such as sea surface temperature (SST), salinity and nutrient concentration. Previous studies of cultures indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified as the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices for surface sediments showed no relationship with annual mean SST of the overlying water. It remains unknown as to what determines the DSI, although our data suggest that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions from algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15-diols have been applied previously as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions

    A quest for the biological sources of long chain alkyl diols in the western tropical North Atlantic Ocean

    Get PDF
    Long chain alkyl diols (LCDs) are widespread in the marine water column and sediments, but their biological sources are mostly unknown. Here we combine lipid analyses with 18S rRNA gene amplicon sequencing on suspended particulate matter (SPM) collected in the photic zone of the western tropical North Atlantic Ocean at 24 stations to infer relationships between LCDs and potential LCD producers. The C30 1,15-diol was detected in all SPM samples and accounted for  &gt; 95&thinsp;% of the total LCDs, while minor proportions of C28 and C30 1,13-diols, C28 and C30 1,14-diols, as well as C32 1,15-diol were found. The concentration of the C30 and C32 diols was higher in the mixed layer of the water column compared to the deep chlorophyll maximum (DCM), whereas concentrations of C28 diols were comparable. Sequencing analyses revealed extremely low contributions ( ≈ 0.1&thinsp;% of the 18S rRNA gene reads) of known LCD producers, but the contributions from two taxonomic classes with which known producers are affiliated, i.e. Dictyochophyceae and Chrysophyceae, followed a trend similar to that of the concentrations of C30 and C32 diols. Statistical analyses indicated that the abundance of 4 operational taxonomic units (OTUs) of the Chrysophyceae and Dictyochophyceae, along with 23 OTUs falling into other phylogenetic groups, were weakly (r ≤ 0.6) but significantly (p value&thinsp; &lt; 0.01) correlated with C30 diol concentrations. It is not clear whether some of these OTUs might indeed correspond to C28−32 diol producers or whether these correlations are just indirect and the occurrence of C30 diols and specific OTUs in the same samples might be driven by other environmental conditions. Moreover, primer mismatches were unlikely, but cannot be excluded, and the variable number of rRNA gene copies within eukaryotes might have affected the analyses leading to LCD producers being undetected or undersampled. Furthermore, based on the average LCD content measured in cultivated LCD-producing algae, the detected concentrations of LCDs in SPM are too high to be explained by the abundances of the suspected LCD-producing OTUs. This is likely explained by the slower degradation of LCDs compared to DNA in the oxic water column and suggests that some of the LCDs found here were likely to be associated with suspended debris, while the DNA from the related LCD producers had been already fully degraded. This suggests that care should be taken in constraining biological sources of relatively stable biomarker lipids by quantitative comparisons of DNA and lipid abundances.</p

    Supplementary data

    No full text

    supplementary data

    No full text

    Radiation therapy in primary non-Hodgkin's lymphomas of the CNS

    No full text
    Twelve patients with primary non-Hodgkin's lymphomas of the CNS are described. Out of 5 CSF cytologies performed, 4 were positive. Radiotherapy was given to the tumour area in 3 patients, or to the whole brain in 5 patients. Four cases received radiotherapy to the spinal cord as well. Patients receiving whole CNS irradiation, including the spinal cord, seem to have a longer survival than patients with brain irradiation only. Out of the 5 patients with total brain irradiation, 2 showed a relapse in the spinal cord. It is suggested that therapy should be given not only to the tumour bearing areas, but should comprise the entire CNS

    The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments

    Get PDF
    Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids was studied in nine surface sediments from the Murray Ridge in the Arabian Sea obtained from varying water depths (900–3000 m) but in close lateral proximity and, therefore, likely receiving a similar particle flux. Due to substantial differences in bottom water oxygen concentration (<3–77 μmol/L) and sedimentation rate, substantial differences exist in the time the biomarker lipids are exposed to oxygen in the sediment. Long chain alkyl diol and keto-ol concentrations in the surface sediments (0–0.5 cm) decreased progressively with increasing oxygen exposure time, suggesting increased oxic degradation. The 1,15-keto-ol/diol ratio (DOXI) increased slightly with oxygen exposure time as diols had apparently slightly higher degradation rates than keto-ols. The ratio of 1,14- vs. 1,13- or 1,15-diols, used as upwelling proxies, did not show substantial changes. However, the C30 1,15‐diol exhibited a slightly higher degradation rate than C28 and C30 1,13‐diols, and thus the Long chain Diol Index (LDI), used as sea surface temperature proxy, showed a negative correlation with the maximum residence time in the oxic zone of the sediment, resulting in ca. 2–3.5 °C change, when translated to temperature. The UK′37 index did not show significant changes with increasing oxygen exposure. This suggests that oxic degradation may affect temperature reconstructions using the LDI in oxic settings and where oxygen concentrations have varied substantially over time
    corecore