947 research outputs found

    Catching Spiral - S0 transition in groups. Insights from SPH simulations with chemo-photometric implementation

    Full text link
    We are investigating the co-evolution of galaxies within groups combining multi-wavelength photometric and 2D kinematical observations. Here we focus on S0s showing star formation in ring/arm-like structures. We use smooth particle hydrodynamical simulations (SPH) with chemo-photometric implementation which provide dynamical and morphological information together with the spectral energy distribution (SED) at each evolutionary stage. As test cases, we simulate the evolution of two such S0s: NGC 1533 and NGC 3626. The merging of two halos with mass ratio 2:1, initially just composed of dark matter (DM) and gas, well match their observed SEDs, their surface brightness profiles and their overall kinematics. The residual star formation today "rejuvenating" the ring/arm like structures in these S0s is then a mere consequence of a major merger, i.e. this is a phase during the merger episode. The peculiar kinematical features, e.g. gas-stars counter rotation in NGC 3626, depends on the halos initial impact parameters. Furthermore, our simulations allow to follow, in a fully consistent way, the transition of these S0s through the green valley in the NUV-r vs. Mr colour magnitude diagram, which they cross in about 3-5 Gyr, before reaching their current position in the red sequence. We conclude that a viable mechanism driving the evolution of S0s in groups is of gravitational origin.Comment: 30 pages, 6 figures; accepted for publication in Advances in Space Research, Special Issue: Ultraviolet Astrophysic

    Galaxy evolution in groups. USGC U268 and USGC U376 in the Leo cloud

    Full text link
    With the aim of investigating galaxy evolution in nearby galaxy groups, we analysed the spectral energy distribution of 24 galaxies, members of two groups in the Leo cloud, USGC U268 and USGC U376. We estimated the ages and stellar masses of the galaxies by fitting their total apparent magnitudes from far-ultraviolet to near-infrared with population synthesis models. The comparison of the results for a subsample of galaxies with smooth particle hydrodynamic (SPH) simulations with chemo-photometric implementation, shows that in most cases the estimated stellar masses obtained with the two different approaches are in good agreement. The kinematical and dynamical analysis indicates that USGC U268 is in a pre-virial collapse phase while USGC U376 is likely in a more evolved phase towards virialization.Comment: 16 pages, 6 figures; accepted for publication in Advances in Space Research, Special Issue: Ultraviolet Astrophysic

    Small-scale systems of galaxies. IV. Searching for the faint galaxy population associated with X-ray detected isolated E+S pairs

    Full text link
    In hierarchical evolutionary scenarios, isolated, physical pairs may represent an intermediate phase, or "way station", between collapsing groups and isolated elliptical (E) galaxies (or fossil groups). We started a comprehensive study of a sample of galaxy pairs composed of a giant E and a spiral (S) with the aim of investigating their formation/evolutionary history from observed optical and X-ray properties. Here we present VLT-VIMOS observations designed to identify faint galaxies associated with the E+S systems from candidate lists generated using photometric criteria on WFI images covering an area of ~ 0.2 h^{-1} Mpc radius around the pairs. The results are discussed in the context of the evolution of poor galaxy group associations. A comparison between the Optical Luminosity Functions (OLFs) of our E+S systems and a sample of X-ray bright poor groups suggest that the OLF of X-ray detected poor galaxy systems is not universal. The OLF of our X-ray bright systems suggests that they are more dynamically evolved than our X-ray faint sample and some X-ray bright groups in the literature. However, we suggest that the X-ray faint E+S pairs represent a phase in the dynamical evolution of some X-ray bright poor galaxy groups. The recent or ongoing interaction in which the E member of the X-ray faint pairs is involved could have decreased the luminosity of any surrounding X-ray emitting gas.Comment: accepted for publication in Astronomy and Astrophysic

    HJ Inequalities Involving Lie Brackets and Feedback Stabilizability with Cost Regulation

    Get PDF
    With reference to an optimal control problem where the state has to approach asymptotically a closed target while paying a non-negative integral cost, we propose a generalization of the classical dissipative relation that defines a Control Lyapunov Function to a weaker differential inequality. The latter involves both the cost and the iterated Lie brackets of the vector fields in the dynamics up to a certain degree k = 1, and we call any of its (suitably defined) solutions a degree -k Minimum Restraint Function. We prove that the existence of a degree -k Minimum Restraint Function allows us to build a Lie-bracket-based feedback which sample stabilizes the system to the target while regulating (i.e., uniformly bounding) the cost

    A multi-wavelength study of the evolution of Early-Type Galaxies in Groups: the ultraviolet view

    Get PDF
    ABRIDGED- The UV-optical color magnitude diagram (CMD) of rich galaxy groups is characterised by a well developed Red Sequence (RS), a Blue Cloud (BC) and the so-called Green Valley (GV). Loose, less evolved groups of galaxies likely not virialized yet may lack a well defined RS. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the RS, checking for signatures of such a transition in their photometric and morphological properties. We report on the UV properties of a sample of ETGs galaxies inhabiting the RS. The analysis of their structures, as derived by fitting a Sersic law to their UV luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role in the evolution of this class of galaxies. SPH simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through UV-optical CDM, providing some fundamental information such as the crossing time through the GV, which depends on their luminosity. The transition from the BC to the RS takes several Gyrs, being about 3-5 Gyr for the the brightest galaxies and more long for fainter ones, if it occurs. The photometric study of nearby galaxy structures in UV is seriously hampered by either the limited FoV of the cameras (e.g in HST) or by the low spatial resolution of the images (e.g in the GALEX). Current missions equipped with telescopes and cameras sensitive to UV wavelengths, such as Swift-UVOT and Astrosat-UVIT, provide a relatively large FoV and better resolution than the GALEX. More powerful UV instruments (size, resolution and FoV) are obviously bound to yield fundamental advances in the accuracy and depth of the surface photometry and in the characterisation of the galaxy environment.Comment: 12 pages, 6 figures: accepted for publication in Astrophysics & Space Science as contributions to the workshop: "UV astronomy, the needs and the means
    • …
    corecore