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Abstract
With reference to an optimal control problem where the state has to approach asymp-
totically a closed target while paying a non-negative integral cost, we propose a
generalization of the classical dissipative relation that defines a Control Lyapunov
Function to a weaker differential inequality. The latter involves both the cost and the
iterated Lie brackets of the vector fields in the dynamics up to a certain degree k ≥ 1,
and we call any of its (suitably defined) solutions a degree-k Minimum Restraint Func-
tion. We prove that the existence of a degree-k Minimum Restraint Function allows us
to build a Lie-bracket-based feedback which sample stabilizes the system to the target
while regulating (i.e., uniformly bounding) the cost.

Keywords Lyapunov functions · Asymptotic stabilizability · Discontinuous feedback
law · Optimal control · Lie brackets
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1 Introduction

The stabilizability to a target T ⊂ R
n of a control system ẏ = f (y, α) onRn consists

in the existence of a feedback law α : Rn \ T → A, where A is the set of control
values, whose (suitably defined) implementation drives the state trajectory towards
the target T , in some uniform way.
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Though stabilizability is a dynamical issue, it may obviously be considered together
with a concomitant optimization problem. Specifically, starting from any state x ∈
R
n\T , one might wish to minimize a cost functional of the form

∫ Sy

0
l(y(s), α(s)) ds, (l ≥ 0), (1)

over all control-trajectory pairs (α, y) : [0, Sy[→ A × R
n of the control system

ẏ = f (y, α), y(0) = x, (2)

where 0 < Sy ≤ ∞ denotes the infimum among the times S that verify
lim

s→S− dist(y(s), T ) = 0. A natural question then arises:

(Q)With a suitably extended notion of stabilization, what are sufficient conditions for
the existence of a modified Lyapunov function that will simultaneously stabilize the
system while bounding the costs?

As for global asymptotic controllability, which is stabilizability’s correspond-
ing open loop notion, early answers to (Q) have been provided in [24, 27] by
means of the notion of Minimum Restraint Function (MRF). The latter is a par-
ticular Control Lyapunov Function—i.e. a solution of a suitable Hamilton–Jacobi
dissipative inequality—which, besides implying global asymptotic controllability, reg-
ulates the cost, namely it provides a criterium for selecting control-trajectory pairs
s �→ (α(s), y(s)) which satisfy a uniform bound on the corresponding cost. Question
(Q) has received some answers for both bounded and unbounded controls in . [21–23],
respectively, where one shows how a stabilizing feedback law, which also ensures an
upper bound on the cost, can be built starting from a MRF, through a ‘sample and
hold’ approach. (Among the different notions of stabilizability, see e.g. [1, 4, 7, 10,
35, 36, 38], we consider here the so-called sample stabilizability, see e.g. [9, 11, 34].)

In relation to the driftless control-affine system

ẏ(s) =
m∑
i=1

fi (y(s)) αi (s), (3)

where the controls α take values in A := {±e1, . . . ,±em} (ei denoting the i th ele-
ment of the canonical basis of Rm), in this paper we aim to improve these results by
constructing a Lie-bracket-determined stabilizing feedback which, at the same time,
induces a bound for the cost (1).

This means, in particular, that the utilized ‘sample and hold’ technique involves not
only the vector fields f1, . . . , fm but also their iterated Lie brackets.

More precisely, we will consider the degree-k Hamiltonian

H [p0](k)(x, p, u) := min
B

{
〈p, B(x)〉 + p0(u) max

a∈AB
l(x, a)

}
, (4)

where p0 : R≥0 → [0, 1] is a continuous increasing function, here called cost mul-
tiplier. The minimum is taken among (signed) iterated Lie brackets B of the vector
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fields f1, . . . , fm of length ≤ k, while, for any bracket B, the inner maximization is
performed over the subset AB ⊂ A of control values

utilized to approximate the B-flow. The novelty with respect to the standard
Hamiltonian consists in the fact

that, on the one hand, for k ≥ 2, H [p0](k) is obtained by minimization over vectors
(the Lie brackets) which may not belong to the dynamics of the system, and, on
the other hand, H [p0](k) depends also on the functions l and p0. Under some mild
hypotheses specified in Sect. 2, the degree-k Hamiltonian H [p0](k) is well defined and
continuous. Finally, in order to choose the right iterated Lie bracket (in the construction
of the feedback) we exploit the following differential inequality:

H [p0](k)(x, p,U (x)) ≤ −γ (U (x)) ∀x ∈ R
n \ T , ∀p ∈ ∂PU (x). (5)

Here, the dissipative rate γ is an increasing function taking values in ]0,+∞[ and
∂PU (x) denotes the proximal subdifferential of U at x (see (6)). We call relation (5)
the degree-k HJ dissipative inequality (where HJ stands for Hamilton–Jacobi). A
proper, positive definite, and continuous function U : Rn \ T → R satisfying (5) for
some p0 and γ , is called a degree-k Minimum Restraint Function (in short, degree -k
MRF). Let us observe that, as a trivial consequence of the monotonicity relation

H [p0](k) ≤ H [p0](k−1) ≤ · · · ≤ H [p0](1),

the higher the Hamiltonian’s degree the larger the corresponding set of MRFs.
Furthermore, as shown in an example in [29], for k sufficiently large it can well

happen that a smooth degree-k MRF does exist while a standard, i.e. degree-1, C1

MRF, does not (see also [28, Ex. 2.1−2.4], for the case with no cost). An increased
regularity of a degree-k MRF—possibly obtained by choosing a sufficiently large
degree k—is of obvious interest, both from a numerical point of view and in relation
with feedback insensitivity to data errors.

Our main result, which will be rigorously stated in Theorem 1, can be roughly
summarized as follows:
Main result. Under some regularity and integrability assumptions, the existence of a
degree-k Minimum Restraint Function U : Rn \ T → R

implies that control system (3) is degree-k sample stabilizable to T with regulated
cost.

Let us observe that the use of Lie brackets is a well-established, basic tool in the
investigations of necessary conditions for optimality as well as sufficient conditions
for controllability (see e.g. [2, 3, 12, 17, 37]). Furthermore, Lie algebraic assumptions
play a crucial role in the study of regularity and uniqueness for boundary value prob-
lems of Hamilton–Jacobi equations (see e.g. [5] and references therein). However, in
the mentioned literature Lie brackets are not involved explicitly in the connected HJ
equations or inequalities, as is the case in our degree-k dissipative inequality (5).

As for the assumptions in the above statement, they include some integrability
properties of the costmultiplier p0 and of the dissipative rateγ . Furthermore,whenever
k > 1, they also involve a certain interplay between the curvature parameters of ∂T
and the semiconcavity coefficient of the MRF U (see Sect. 3.2). As a matter of fact,
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the need for such a condition was somehow predictable, since it results unavoidable
in the high order controllability conditions for the minimum time problem with a
general target (see e.g. [18, 19, 25, 26]), whereU is the distance d from the target and
l ≡ 1 (see Remark 10). For instance, when d is a solution of (5) for p0 and γ positive
constants, the ‘regularity and integrability assumptions’ of theMain Result are always
satisfied as soon as either T is a singleton or T satisfies the internal sphere condition
(see Remark 6).

Let us summarize the previous considerations by saying that, on the one hand, our
results extend previous results on sample stabilizability by considering both higher
order conditions and a regulated cost. Also, our main result extends some achievement
of [15, 28], which concerned the case without a cost. On the other hand, it can be
regarded as a generalization to problems with a nonnegative vanishing Lagrangian l
(widely investigated from a PDEs’ point of view, see e.g. [20, 30, 31]) of both classical
achievements onHölder continuity andmore recent regularity results for theminimum
time problem.

The paper is organized as follows. Section 2 is devoted to state the definitions of
degree-k feedback generator and degree-k sample stabilizabilitywith regulated cost. In
Sect. 3 we introduce the precise assumptions and state the main result, whose proof is
given in Sect. 4. In Sect. 5 we brieflymention possible generalizations of both the form
of the dynamics (no longer driftless control-affine) and in the regularity assumptions.
In particular, the latter can be weakened up to the point of considering set-valued Lie
brackets of Lipschitz continuous vector fields.

1.1 Notation and Preliminaries

For any a, b ∈ R, let us set a ∨ b := max{a, b}, a ∧ b := min{a, b}. For any integer
N ≥ 1, (RN )∗ denotes the dual space of RN (and is often identified with R

N itself),
while we set RN≥0 := [0,+∞[N and R

N
>0 :=]0,+∞[N . For N = 1 we simply write

R≥0 and R>0, respectively. We denote the closed unit ball in R
N by BN and, given

r > 0, rBN will stand for the ball of radius r (we do not specify the dimensionwhen it is
clear from the context).Given twononempty sets X ,Y ⊆ R

N ,we calldistancebetween
X and Y the number dist(X ,Y ) := inf{|x − y|: x ∈ X , y ∈ Y }. We do observe that
dist(·, ·) is not a distance in general, while the mapRN � x �→ dist({x}, X) coincides
with the distance function from X . We set B(X , r) := {x ∈ R

N : dist({x}, X) ≤ r}
and we write ∂X , int(X), and X for the boundary, the interior, and the closure of X ,
respectively. For any twopoints x , y ∈ R

N wedenote by sgm(x, y) the segment joining
them, i.e. sgm(x, y) := {λx + (1 − λ)y: λ ∈ [0, 1]}. Moreover, for any two vectors
v,w ∈ R

N , 〈v,w〉 denotes their scalar product. Let � ⊆ R
N be an open, nonempty

subset. Given an integer k ≥ 1, we write Ck(�) for the set of vector fields of class Ck

on �, namely Ck(�) := Ck(�;RN ), while Ck
b (�) ⊂ Ck(�) denotes the subset of

vector fields with bounded derivatives up to order k. We useCk−1,1(�) ⊂ Ck−1(�) to
denote the subset of vector fields whose (k − 1)-th derivative is Lipschitz continuous
on �, and we set and Ck−1,1

b (�) := Ck−1
b (�) ∩ Ck−1,1(�).

We say that a continuous function G : � → R is positive definite if G(x) > 0
∀x ∈ � and G(x) = 0 ∀x ∈ ∂�. The function G is called proper if the pre-image
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G−1(K) of any compact setK ⊂ R is compact.We use ∂PG(x) to denote the (possibly
empty) proximal subdifferential of G at x , namely the subset of (RN )∗ such that, for
some positive constants ρ, c, one has

p ∈ ∂PG(x) ⇐⇒ G(x̄) − G(x) + ρ|x̄ − x |2 ≥ 〈p, x̄ − x〉 ∀x̄ ∈ B({x}, c).
(6)

The limiting subdifferential ∂G(x) of G at x ∈ �, is defined as

∂G(x) :=
{
p ∈ R

N : p = lim
i→+∞, pi : pi ∈ ∂PG(xi ), lim

i→+∞ xi = x
}
.

When the function G is locally Lipschitz continuous on�, the limiting subdifferential
∂G(x) is nonempty at every point.

We say that a function G : � → R is semiconcave (with linear modulus) on � if
it is continuous and for any closed subset M ⊂ � there exists ηM > 0 such that

G(x1) + G(x2) − 2G

(
x1 + x2

2

)
≤ ηM |x1 − x2|2

for all x1, x2 ∈ M such that the segment sgm(x1, x2) is contained inM. If this property
is valid just for any compact subsetM ⊂ �, G is said to be locally semiconcave (with
linear modulus) on �. In both cases, G is locally Lipschitz continuous and, for M,
ηM , x1, x2 as above, for any p ∈ ∂G(x) the following inequality holds true as well
(see [8, Prop. 3.3.1, 3.6.2]):

G(x2) − G(x1) ≤ 〈p, x2 − x1〉 + ηM |x2 − x1|2. (7)

Finally, let us collect some basic definitions on iterated Lie brackets. If g1, g2 are
C1 vector fields on RN the Lie bracket of g1 and g2 is defined as

[g1, g2](x) := Dg2(x) · g1(x) − Dg1(x) · g2(x)
( = −[g2, g1](x)

)
.

As is well-known, the map [g1, g2] is a true vector field, i.e. it can be defined intrin-
sically. If the vector fields are sufficiently regular, one can iterate the bracketing
process: for instance, given a 4-tuple g := (g1, g2, g3, g4) of vector fields one can con-
struct the brackets [[g1, g2], g3], [[g1, g2], [g3, g4]], [[[g1, g2], g3], g4], [[g2, g3], g4].
Accordingly, one can consider the (iterated) formal brackets B1 := [[X1, X2], X3],
B2 := [[X1, X2], [X3, X4]], B3 := [[[X1, X2], X3], X4], B4 := [[X2, X3], X4]
(regarded as sequence of letters X1, . . . , X4, commas, and left and right square
parentheses), so that, with obvious meaning of the notation, B1(g) = [[g1, g2], g3],
B2(g) = [[g1, g2], [g3, g4]], B3(g) = [[[g1, g2], g3], g4], B4(g) = [[g2, g3], g4].

The degree (or length) of a formal bracket is the number 	B of letters that are
involved in it. For instance, the brackets B1, B2, B3, B4 have degrees equal to 3, 4, 4,
and 3, respectively. By convention, a single variable Xi is a formal bracket of degree
1. Given a formal bracket B of degree ≥ 2, then there exist formal brackets B1 and
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B2 such that B = [B1, B2]. The pair (B1, B2) is univocally determined and it is called
the factorization of B.

The switch-number of a formal bracket B is the number sB defined recursively as:

sB := 1 if	B = 1, sB := 2
(
sB1 + sB2

)
if 	B ≥ 2 and B = [B1, B2].

For instance, the switch-numbers of [[X3, X4], [[X5, X6], X7]] and [[X5, X6], X7]
are 28 and 10, respectively. When no confusion may arise, we also speak of ‘degree
and switch-number of Lie brackets of vector fields’. It may happen that brackets with
the same degree have different switch numbers. However, if we set, for any integer
k ≥ 1,

{
β(k) = 2[β(k − 1) + 1] if k ≥ 2,

β(1) = 1,
(8)

and if B is a formal bracket with degree 	B ≤ k, then
sB ≤ β(k).
We will use the following notion of admissible bracket pair:

Definition 1 Let c ≥ 0, 	 ≥ 1, q ≥ c+ 	 be integers, let B = B(Xc+1, . . . , Xc+	) be
an iterated formal bracket and let g = (g1, . . . , gq) be a string of continuous vector
fields. We say that g is of class CB if there exist non-negative integers k1 . . . , kq such
that, by the only information that gi is of class Cki for every i = 1, . . . , q, one can
deduce that B(g) is a C0 vector field (see [14, Definition 2.6]). In this case, we call
(B, g) an admissible bracket pair (of degree 	 and switch number s := sB ).

For instance, if B = [[[X3, X4], [X5, X6]], X7],g = (g1, g2, g3, g4, g5, g6, g7, g8),
then g is of class CB provided g3, g4, g5, g6 are of class C3 and g7 ∈ C1.

2 Degree-k Sample Stabilizability with Regulated Cost

Let us recall from [16] the definitions of degree-k feedback generator, sampling pro-
cess, and degree-k sample stabilizability with regulated cost. Throughout the whole
paper k ≥ 1 will be a given integer and we will consider the following sets of
hypotheses:

(H1) The control set A ⊂ R
m is defined as A := {±e1, . . . ,±em} and the target

T ⊂ R
n is a closed subset with compact boundary.

(H2) the Lagrangian l : Rn × A → R≥0 is such that, for any a ∈ A, the function
R
n � x �→ l(x, a), is locally Lipschitz continuous. Furthermore, the vector

fields f1, . . . , fm : Rn → R
n belong to Ck−1,1

b (�) for any bounded, nonempty
subset � ⊂ R

n .

We set d(X) := dist(X , T ) for any X ⊂ R
n . If X = {x} for some x ∈ R

n , we will
simply write d(x) in place of d({x}).
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2.1 Admissible Trajectories and Global Asymptotic Controllability with Regulated
Cost

Definition 2 (Admissible controls, trajectories, and costs) We say that (α, y) is an
admissible control-trajectory pair if there is some 0 < Sy ≤ +∞ such that:

(i) α : [0, Sy[→ A is Lebesgue measurable;
(ii) y : [0, Sy[→ R

n \ T is a (Carathéodory) solution to the control system

ẏ(s) =
m∑
i=1

fi (y(s)) αi (s), (9)

satisfying, if Sy < +∞, lims→S−
y
d(y(s)) = 0.

Given an admissible pair (α, y), we refer to I given by

I(s) :=
∫ s

0
l(y(σ ), α(σ )) dσ, ∀s ∈ [0, Sy[ (10)

as the integral cost, and to (α, y,I) as an admissible control-trajectory-cost triple.
For every x ∈ R

n \ T , we call (α, y), (α, y,I) as above with y(0) = x , an admissible
pair from x and an admissible triple from x , respectively. For any admissible pair or
triple such that Sy < +∞, we extend α, y, and I to R≥0 by setting α(s) := ā, ā ∈ A
arbitrary, and (y,I)(s) := limσ→S−

y
(y(σ ),I(σ )), for any s ≥ Sy ,1

Let us recall the notion of global asymptotic controllability with regulated cost, as
formulated in [16].

Definition 3 (Global asymptotic controllability with regulated cost) We say that
system (9) is globally asymptotically controllable (in short, GAC) to T if, for any
0 < r < R, for every x ∈ R

n with d(x) ≤ R there exists an admissible
control-trajectory pair (α, y) from x that satisfies the following conditions (i)–(iii):

(i) d(y(s)) ≤ �(R) ∀s ≥ 0; (Overshoot boundedness)
(ii) d(y(s)) ≤ r ∀s ≥ S(R, r); (Uniform attractiveness)
(iii) lim

s→+∞ d(y(s)) = 0, (Total attractiveness)

where� : R≥0 → R≥0 is a functionwith�(0) = 0 andS : R2
>0 → R>0. If, moreover,

there exists a function W : Rn\T → R≥0 continuous, proper, and positive definite,
such that the admissible control-trajectory-cost triple (α, y,I) associated with (α, y)
above, satisfies

(iv)
∫ Sy

0
l(α(s), y(s)) ds ≤ W(x) (Uniform cost boundedness)

1 Thanks to hypotheses (H1) (H2), this limit always exists.
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(Sy ≤ +∞ as in Definition 2), we say that system (9) is globally asymptotically
controllable to T with W-regulated cost (or simply, with regulated cost).

2.2 Degree-k Feedback Generator

Let us introduce the sets of admissible bracket pairs associated with the vector fields
± f1, . . . ,± fm in the dynamics.

Definition 4 (Control label) For any integer h such that 1 ≤ h ≤ k, let us define the
set F (h) of control labels of degree ≤ h as

F (h) :=
⎧⎨
⎩(B, g, sgn)

∣∣∣∣∣∣
sgn ∈ {+,−} and(B, g)is an admissible bracket
pair of degreelB ≤ hsuch thatg := (g1, . . . , gq)
satisfiesg j ∈ { f1, . . . , fm}for any j = 1, . . . , q

⎫⎬
⎭ .

Wewill call degree and switch number of a control label (B, g, sgn) ∈ F (h), the degree
and the switch number of B, respectively.

With any control label in F (k) we associate an oriented control:

Definition 5 (Oriented control) Consider a time t > 0 and (B, g,+), (B, g,−) ∈
F (k).

We define the corresponding oriented controls α(B,g,+),t , α(B,g,−),t , respectively,
by means of the following recursive procedure:

(i) if 	B = 1, i.e. B = X j for some integer j ≥ 1, we set

α(B,g,+),t (s) := ei for anys ∈ [0, t],

where i ∈ {1, . . . ,m} is such that B(g) = fi (i.e. g j = fi );
(ii) if 	B ≥ 1, we set α(B,g,−),t (s) := −α(B,g,+),t (t − s) for any s ∈ [0, t];
(iii) if 	B ≥ 2 and B = [B1, B2] is the factorization of B, we set s1 := sB1 , s2 := sB2 ,

and s := sB(= 2s1 + 2s2) and, for any s ∈ [0, t], we posit

α(B,g,+),t (s) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(B1,g,+),
s1
s t (s) if s ∈ [0, s1

s t[
α(B2,g,+),

s2
s t

(
s − s1

s t
)

if s ∈ [s1s t, s1+s2
s t[

α(B1,g,−),
s1
s t

(
s − s1+s2

s t
)

if s ∈ [s1+s2
s t, 2s1+s2

s t[
α(B2,g,−),

s2
s t

(
s − 2s1+s2

s t
)

if s ∈
[
2s1+s2

s t, t
]
.

(11)

Example 1 If B = [[X3, X4], [X5, X6]], g = ( f3, f2, f1, f2, f3, f4, f2, f3) and t > 0
one has
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α(B,g,+),t (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 if s ∈ [0, t/16[∪[9t/16, 10t/16[
e2 if s ∈ [t/16, 2t/16[∪[8t/16, 9t/16[
e3 if s ∈ [4t/16, 5t/16[∪[13t/16, 14t/16[
e4 if s ∈ [5t/16, 6t/16[∪[12t/16, 13t/16[

−e1 if s ∈ [2t/16, 3t/16[∪[11t/16, 12t/16[
−e2 if s ∈ [3t/16, 4t/16[∪[10t/16, 11t/16]
−e3 if s ∈ [6t/16, 7t/16[∪[15t/16, t]
−e4 if s ∈ [7t/16, 8t/16[∪[14t/16, 15t/16[

(and α(B,g,−),t can be obtained according to Definition 4, (ii)).

Let us recall a crucial formula of Lie bracket approximation in [14, Theorem 3.7],
in a form proved in [15, Lemma 3.1].

Lemma 1 Assume (H1)-(H2) and fix R̃ > 0. Then, there exist δ̄ > 0 and ω > 0 such

that for any x ∈ B(T , R̃)\T , any control label (B, g, sgn) ∈ F (k) of degree 	 and
switch number s, and any t ∈ [0, δ̄], there exists a (unique) solution y(·) to the Cauchy
problem

ẏ(s) =
m∑
i=1

fi (y(s))α
i
(B,g,sgn),t (s), y(0) = x,

defined on the whole interval [0, t] and satisfying2

y(s) ∈ B(T , 2R̃) ∀s ∈ [0, t],
∣∣∣∣∣y(t) − x − sgn B(g)(x)

(
t

s

)	
∣∣∣∣∣ ≤ ω t

(
t

s

)	

.(12)

Remark 1 In general, δ̄ and ω in the above lemma do depend on R̃, while they are
independent of R̃ as soon as the hypothesis f1, . . . , fm ∈ Ck−1,1

b (Rn) replaces the
assumption on f1, . . . , fm in (H2).

Definition 6 (Degree-k feedback generator) We call degree-k feedback generator any
map V : Rn \ T → F (k) and write

x �→ V(x) := (Bx , gx , sgnx ),
	(x) := 	Bx

, s(x) := sBx ∀x ∈ R
n \ T .

(13)

Definition 7 (Multiflow) Given a degree-k feedback generatorV , for every x ∈ R
n\T

and t > 0, we define the control αx,t : R≥0 → A, as

αx,t (s) := αV(x),t (s ∧ t), for anys ∈ R≥0.

2 We use the notation ‘sgn B(g)’ to mean ‘+B(g)’ if sgn = + and ‘−B(g)’ if sgn = −.
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We will refer to a maximal solution to the Cauchy problem

ẏ(s) =
m∑
i=1

fi
(
y(s)

)
αi
x,t (s), y(0) = x, (14)

as the V-multiflow, starting from x up to the time t (or simply V-multiflow). It will be
denoted by yx,t .3

2.3 Sampling Processes

We call π := {s j } j a partition of R≥0 if s0 = 0, s j < s j+1 for any j ∈ N, and
lim

j→+∞ s j = +∞. The sampling time, or diameter, of π is defined as the supremum of

the set {s j+1 − s j : j ∈ N}.
Definition 8 (V-sampling process). Given a degree-k feedback generator V , we refer
to (x, π, απ

x , yπ
x ) as a V-sampling process if x ∈ R

n\T , π := {s j } j is a partition of
R≥0, yπ

x is a continuous function taking values in R
n \ T defined recursively by

{
yπ
x (s) := yx j ,t j (s − s j−1) for alls ∈ [s j−1, σ j [ and 1 ≤ j ≤ j
yπ
x (0) = x,

(15)

where, for all j ≥ 1, yx j ,t j is a V-multiflow with t j := s j − s j−1, x j := yπ
x (s j−1) for

all 1 ≤ j ≤ j, and4

σ j := sup
{
σ ≥ s j−1: yx j ,t j defined on [s j−1, σ [, yx j ,t j ([s j−1, σ [) ⊂ R

n \ T }
,

j := inf{ j : σ j ≤ s j }.

We will refer to the map yπ
x : [0, σj[→ R

n\T as a V-sampling trajectory. According
to Definition 7, the corresponding V-sampling control απ

x is defined as

απ
x (s) := αx j ,t j (s − s j−1) for all s ∈ [s j−1, s j [ ∩ [0, σj[, 1 ≤ j ≤ j.

Furthermore, we define the V-sampling cost Iπ
x as

Iπ
x (s) :=

∫ s

0
l(yπ

x (σ ), απ
x (σ )) dσ, ∀s ∈ [0, σj[, (16)

and we call (x, π, απ
x , yπ

x ,Iπ
x ) a V-sampling process-cost.

If (απ
x , yπ

x ) [resp. (απ
x , yπ

x ,Iπ
x )] is an admissible pair [resp. triple] from x , we

say that the V-sampling process (x, π, απ
x , yπ

x ) [resp. V-sampling process-cost

3 By Lemma 1, given R̃ > 0 there is some δ̄ > 0 such that, for all x ∈ R
n \ T with d(x) ≤ R̃ and all

t ∈ [0, δ̄], the trajectory yx,t is defined on the whole interval [0, t].
4 We mean j = +∞ if the set is empty.
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(x, π, απ
x , yπ

x ,Iπ
x )] is admissible. In this case, when σj = Syπ

x
< +∞, we extend

απ
x , y

π
x , and Iπ

x to R≥0, according to Definition 2.
In the definition of degree-k sample stabilizability with regulated cost below, we

will consider only V-sampling processes belonging to the subclass of d- scaled V-
sampling processes, defined as follows.

Definition 9 [d-scaled V-sampling process-cost] Given d := (δ1, . . . , δk) in R
k
>0,

referred to as a multirank, and a degree-k feedback generator V , we say that
(x, π, απ

x , yπ
x ,Iπ

x ) [resp. (x, π, απ
x , yπ

x )] is a d-scaled V-sampling process-cost
[resp. d-scaled V-sampling process] provided it is a V-sampling process-cost [resp.
V-sampling process] such that the partition π = {s j } j satisfies

�(k) δ	 j ≤ s j − s j−1 ≤ δ	 j ∀ j ∈ N, j ≥ 1, (17)

where 	 j := 	(yπ
x (s j−1)) (see Definition 13) and �(k) := k−1

k .

Remark 2 When k = 1, the degree-1 feedback generator V takes values in F (1), so
that, in view of Definition 5, a V-sampling process (x, π, απ

x , yπ
x ) is nothing but a

standard π -sampling process associated with the feedback law α(x) := sgnx ei , as
soon as V(x) = (Bx , gx , sgnx ) and Bx (gx ) = fi . In particular, in this case �(1) =
0, d = δ > 0, and a d-scaled V-sampling process (x, π, απ

x , yπ
x ) coincides with

a standard π -sampling process such that diam(π) < δ, exactly as required in the
classical notion of sample stabilizability (see, for instance, [10, 11]). When k > 1, the
notion of d-scaledV-sampling process is more restrictive. In particular, (17) prescribes
for each such process (x, π, απ

x , yπ
x ) both an upper and a lower bound on the amplitude

s j − s j−1 of every sampling interval, depending on the degree 	 j ∈ {1, . . . , k} of
V(yπ

x (s j−1)). Considering this subclass of processes will actually be crucial in the
proof of Theorem 1. Indeed, when a trajectory yπ

x defined on an interval [s j−1, s j ]
approximates the direction of a degree-	 j Lie bracket of length 	 j > 1 for the time

t j := s j − s j−1 (< 1), the displacement of yπ
x is proportional to t

	 j
j < t j—see the

asymptotic formula (12). Hence, the lower bound in condition (17) ensures that for
each sampling trajectory the sum of the displacements is divergent. This is necessary
in order to build stabilizing sampling trajectories that uniformly approach any fixed
neighborhood of the target while providing an uniform upper bound for the cost (see
Definition 11 below). Incidentally, notice that�(k)might be replaced by any function
null for k = 1, positive and smaller than 1 otherwise.

2.4 Degree-k Sample Stabilizability with Regulated Cost

To state the notion of degree -k sample stabilizability of system (9) to T with regulated
cost, we first need to provide the following definition.

Definition 10 (Integral-cost-bound function) We say that a function
� : R3

>0 → R≥0 is an integral-cost-bound function if

�(R, v1, v2) := �(R) · �(v1, v2),
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where

(i) � : R>0 → R>0 is a continuous, increasing function and � ≡ 1 if k = 1;
(ii) � : R2

>0 → R≥0 is a continuous map, which is increasing and unbounded in the
first variable and decreasing in the second variable;

(iii) there exists a strictly decreasing bilateral sequence (ui )i∈Z ⊂ R>0, such that, for
some (hence, for any) j ∈ Z, one has

+∞∑
i= j

�(ui , ui+1) < +∞, and lim
i→−∞ ui = +∞, lim

i→+∞ ui = 0. (18)

Definition 11 (Degree-k sample stabilizability with regulated cost) LetV be a degree-
k feedback generator and letU : Rn \ T → R≥0 be a continuous, proper, and positive
definite function. We say that V degree -k U -sample stabilizes system (9) to T if
there exists a multirank map d : R2

>0 → R
k
>0 such that, for any 0 < r < R, every

d(R, r)-scaled V-sampling process (x, π, απ
x , yπ

x ) with d(x) ≤ R is admissible and
satisfies

(i) d(yπ
x (s)) ≤ �(R) ∀s ≥ 0,

(ii) t(yπ
x , r) := inf

{
s ≥ 0: U (yπ

x (s)) ≤ ϕ(r)
} ≤ T(R, r),

(iii) if∃τ > 0such that U (yπ
x (τ )) ≤ ϕ(r), then d(yπ

x (s)) ≤ r ∀s ≥ τ,

where � : R≥0 → R≥0, ϕ : R≥0 → R≥0 are continuous, strictly increasing and
unbounded functions with �(0) = 0, ϕ(0) = 0, and T : R2

>0 → R>0 is a function
increasing in the first variable and decreasing in the second one. We will refer to
property (i) as Overshoot boundedness and to (ii)-(iii) as U -Uniform attractiveness.

If, in addition, there exists an integral-cost-bound function � : R3
>0 → R≥0 such

that the V-sampling process-cost (x, π, απ
x , yπ

x ,Iπ
x ) associated with the V-sampling

process (x, π, απ
x , yπ

x ) above satisfies the inequality

(iv) Iπ
x (t(yπ

x , r)) =
∫ t(yπ

x ,r)

0
l(yπ

x (s), απ
x (s))ds ≤ �

(
R, U (x), U (yπ

x (t(yπ
x , r)))

)

we say that V degree-k U -sample stabilizes system (9) to T with �-regulated cost.
We will refer to (iv) as Uniform cost boundedness.

When there exist some function U , some degree-k feedback generator V [and an
integral-cost-bound function �] such that V degree-k U -sample stabilizes system (9)
to T [with�-regulated cost], we say that system (9) is degree-k U -sample stabilizable
toT [with�-regulated cost]. Sometimes,wewill simply say that system (9) isdegree-k
sample stabilizable to T [with regulated cost].

Remark 3 By Theorem 1 below, the existence of a degree-kMRFU leads to the notion
of degree-k U -sample stabilizability with regulated cost in Definition 11. This notion
might look quite involved if compared to classical stabilizability concepts (without
cost). However, maybe this is not the case, in view of the following facts:
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(i) degree-k sample stabilizability with regulated cost implies global asymptotic con-
trollability with regulated cost as in Definition 3 (exactly as classical sample
stabilizability implies global asymptotic controllability);

(ii) in the absence of a cost, system (9) is degree -k sample stabilizable to T for some
k ≥ 1 in the sense of Definition 11 if and only if it is sample stabilizable to T in the
classical sense of [10, Definition I.3], which is in turn equivalent to be degree-k
sample stabilizable to T according to [15, Definition 2.18].

(iii) degree-1 sample stabilizability with regulated cost in the sense of Definition 11
implies sample stabilizability with regulated cost as defined in [21].

The proofs of statements (i) and (ii) can be found in [16]. Moreover, in view of
Remark 2 and using the notations of Definition 11, statement (iii) follows from the
following two considerations: first,U -uniform attractiveness immediately implies the
standard uniform attractiveness condition

∃S(R, r) > 0 such that d(yπ
x (s)) ≤ r for all s ≥ S(R, r)

(with S(R, r) ≤ T(R, r)), which in turn characterizes classical sample stabilizability
(see e.g. [10]); secondly, for k = 1 the uniform cost boundedness condition (iv) in
Definition 11 implies the cost bound condition considered in [21], namely

∫ s(yπ
x ,r)

0
l(yπ

x (s), απ
x (s)) ds ≤

∫ t(yπ
x ,r)

0
l(yπ

x (s), απ
x (s)) ds

≤ �(U (x), ϕ(r)) ≤ �(U (x), 0) =: W (x),

where s(yπ
x , r) := inf{s ≥ 0: d(yπ

x (σ )) ≤ r for all σ ≥ s}.5

3 TheMain Result

Together with the notion of degree-k Hamiltonian, in this section we provide our
most important result: it states that the existence of a suitably defined solution U to
a degree-k Hamilton–Jacobi inequality is a sufficient condition for the system to be
degree-k sample stabilizable with regulated cost.

3.1 Degree-kHamilton–Jacobi Dissipative Inequality

For any integer h, 1 ≤ h ≤ k, and any (B, g, sgn) ∈ F (h) let us define the subset
A(B, g, sgn) ⊆ A of control values

5 Notice that the U -uniform attractiveness implies s(yπ
x , r) ≤ t(yπ

x , r).
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A(B, g, sgn) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{ei } ifB(g) = fi andsgn = +,

{−ei } ifB(g) = fi andsgn = −,

{ ± e j1 , . . . ,±e j	
}

⎧⎪⎨
⎪⎩
ifB = B(Xc+1, . . . , Xc+	),

2 ≤ 	 ≤ h, andgis such that

gc+r = f jr forr = 1, . . . , 	.

(19)

Definition 12 (Pseudo-Hamiltonian) We define the pseudo-Hamiltonian H :
(Rn\T ) × R

∗ × (Rn)∗ × F (k) → R, as

H
(
x, p0, p, (B, g, sgn)

)
:= 〈p, sgn B(g)(x)〉 + p0 max

a∈A(B,g,sgn)
l(x, a)

for any
(
x, p0, p, (B, g, sgn)

) ∈ (Rn\T ) × R
∗ × (Rn)∗ × F (k).

Definition 13 (Degree-h Hamiltonian) Given a continuous increasing function p0 :
R≥0 → [0, 1] and an integer h, 1 ≤ h ≤ k, we define the degree-h Hamiltonian

H [p0](h) : (Rn \ T ) × (Rn)∗ × R → R,

by setting, for every (x, p, u) ∈ (Rn\T ) × (Rn)∗ × R,

H [p0](h)(x, p, u) := min
(B,g,sgn)∈F (h)

H
(
x, p0(u), p, (B, g, sgn)

)
.

Notice that minimum exists because the set of control labels of degree ≤ h is finite.
Furthermore, under the standing hypotheses, degree-h Hamiltonians H [p0](h) arewell
defined and continuous for every h ∈ {1, . . . , k}. Observe also that

H [p0](k) ≤ H [p0](k−1) ≤ · · · ≤ H [p0](1), (20)

where the degree-1 Hamiltonian H [p0](1) reduces to

H [p0](1)(x, p, u) = min
a∈A

{〈
p,

m∑
i=1

fi (x)a
i

〉
+ p0(u) l(x, a)

}
.

As an example, let us consider the degree-2 Hamiltonian H [p0](2):

H [p0](2)(x, p, u) = H [p0](1)(x, p, u) ∧
min

i, j∈{1,...,m}

{
〈p, [ fi , f j ](x)〉 + max

a∈{±ei ,±e j }
p0(u)l(x, a)

}
.

Definition 14 (Degree-h MRF) For any integer h, 1 ≤ h ≤ k, a continuous map U :
Rn\T → R is said to be a degree-h Minimum Restraint Function (in short, degree-h
MRF) if it is proper, positive definite, and satisfies the HJ dissipative inequality

H [p0](h)(x, p,U (x)) ≤ −γ (U (x)) ∀x ∈ R
n \ T , ∀p ∈ ∂PU (x), (21)
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for somecontinuous and increasing functions p0 : R≥0 → [0, 1] andγ : R≥0 → R>0,
to which we will refer as the cost multiplier and the dissipative rate, respectively.
Furthermore, we say thatU is a degree-h Control Lyapunov Function (in short, degree-
h CLF) if it is a degree-h MRF with p0 ≡ 0.

Remark 4 From (20) it follows that for all q1, q2 ∈ N, 1 ≤ q1 < q2 ≤ k, a degree-q1
MRF (for some p0 and γ ) is also a degree-q2 MRF (for the same p0 and γ ), while the
converse is false, in general. In particular, a smooth degree-k MRF for some k > 1
may exist in situations where there are no smooth degree-1 MRFs (see the examples
in [28, 29]). Actually, this is one of the main reasons for considering degree-k MRFs
with k > 1.

Remark 5 IfU is a degree-kMRF for some p0 and γ , it is also a degree-k CLF. Indeed,
since p0 and the lagrangian l are nonnegative, from the dissipative inequality (21) it
follows that, for every x ∈ R

n\T and p ∈ ∂PU (x),

H [0](k)(x, p,U (x)) = min
(B,g,sgn)∈F (k)

〈p, B(g)(x)〉 ≤ −γ (U (x)). (22)

A notion of (locally semiconcave) degree-k CLF was first introduced in [28]. The
definition of degree-kMRF has been anticipated in [29], in the special case of constant
p0 and lagrangian l independent of the control a ∈ A.

3.2 Main Result

To prove that the existence of a degree-k MRFU implies degree-k sample stabilizabil-
itywith regulated cost,weneed additional assumptions. These conditions include some
integrability requirements on the cost multiplier p0 and on the dissipative rate γ and,
in case k > 1, also the following ν-semiconcavity property for U , in a neighborhood
of the target.

Definition 15 (ν-semiconcavity) Let M ⊂ R
n be a nonempty subset and let ν ∈

[0, 1]. We say that a continuous function U : Rn \ T → R is ν-semiconcave on
M \ T if there are some positive constants L , θ and C > 0 such that for every x ,
x̂ ∈ M\T with sgm(x̂, x) ⊂ M\T and |x̂ − x | ≤ θ , one has

U (x̂) −U (x) ≤ 〈p, x̂ − x〉 + C

d(sgm(x̂, x))ν
|x̂ − x |2 ∀p ∈ ∂U (x),

|p| ≤ L ∀p ∈ ∂U (x).
(23)

Remark 6 If U is a locally semiconcave function on R
n \ T , then, in view of the

property (7) of its subdifferential, U is ν-semiconcave on M \ T with ν = 0 for
every compact setM ⊂ R

n \ T . More generally, the notion of ν-semiconcavity is an
extension of a condition concerning the distance function d (from a closed set T ) (see
e.g [25, 26]). In particular, (see e.g. [8]) note that

1. if T has boundary of class C1,1, then the distance d is semiconcave inRn \ T and
turns out to be ν-semiconcave on R

n \ T with ν = 0, L = 1, for any θ > 0 and
for some C > 0.
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2. If T satisfies the internal sphere condition of radius r > 0, namely, for all x ∈ T
there exists x̄ ∈ T such that x ∈ B(x̄, r) ⊂ T , then the distanced is ν-semiconcave
on Rn \ T with ν = 0 and satisfies (23) for L = 1, and C = 1/r , for every θ > 0.

3. If T is a singleton, then the distance d is ν-semiconcave inRn \T with ν = 1 and
(23) holds for L = C = 1, for every θ > 0.

We will also use the following hypothesis.

(H3) Let U be a degree-k MRF and let p0, γ be the associated cost multiplier and
dissipative rate, respectively.

(i) If k > 1, assume that, for some ν ∈ [0, 1] and c > 0, U is ν-semiconcave on
B(T , c) \ T , and that the map � : R>0 → R>0, defined by

�(w) := 1

p0(w)
∨ 1

p0(w)w1−k−1 ∨ 1

p0(w)γ (w)k−1

∨ 1

p0(w)[wνγ (w)]1−k−1 , (24)

is integrable on [0, u] for any u > 0.

(ii) If k = 1, assume that the map � above, i.e. �(w) = 1

p0(w)
is integrable on

[0, u] for any u > 0.

Remark 7 In some situations, the integrability condition (24) above can be weakened.
For instance, assume that, for some M > 0, 0 < l(x, a) ≤ M for all (x, a) ∈
(Rn \ T ) × A. Then, given a degree-k MRFU with cost multiplier p0 and dissipative
rate γ , set

λ(u) := inf{(x,a)∈Rn×A: U (x)≥u} l(x, a) ∀u > 0

and consider the strictly increasing functions

γ̃ (u) := 1

2
(p0(u) λ(u) + γ (u)) , p̃0(u) := 1

2

(
p0 + γ

M

)
. (25)

From (21) it follows that U also satisfies the HJ dissipative inequality:

H [ p̃0](k)(x, p,U (x)) ≤ −γ̃ (U (x)) ∀x ∈ R
n \ T , ∀p ∈ ∂PU (x).

Hence, U can be regarded as a degree-k MRF with cost multiplier p̃0 and dissipa-
tive rate γ̃ . Notice that condition (24) referred to p̃0 and γ̃ is weaker than the one
corresponding to p0 and γ .

Befor stating our main result, let us finally introduce a stronger, global version of
hypothesis (H2).

(H2)∗ For any a ∈ A, the map x �→ l(x, a) is Lipschitz continuous on R
n .

Furthermore, the vector fields f1, . . . , fm belong to Ck−1,1
b (Rn).
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Theorem 1 (Main result) Assume hypotheses (H1)–(H2) and letU be a degree-k MRF,
which we suppose to be locally semiconcave on Rn \ T . Then, there exists a degree-k
feedback generator V such that the following statements hold:

(i) V degree-k U-sample stabilizes system (9) to T .
(ii) If in addition U satisfies hypothesis (H3), then V degree-k U-sample stabilizes

system (9) to T with �-regulated cost, the map

(R, v1, v2) �→ �(R, v1, v2) = �(R)�(v1, v2)

being an integral-cost-bound function, where � : R2
>0 → R≥0 is defined as

�(v1, v2) =

⎧⎪⎪⎨
⎪⎪⎩
0 ∨

∫ v1

v2
2

�(w) dw if k = 1,

0 ∨
∫ v1

v2
2

�
(v2

v1
w
)
dw if k > 1

(26)

(� as in (24)). In particular, in case k > 1, if U (satisfies (H3) and) is semiconcave
and Lipschitz continuous on Rn \ T 6 and hypothesis (H2) ∗ is satisfied, then � is
constant.

The proof of the theorem will be given in the next section. From Theorem 1 and
[16, Theorem 3.1], the existence of a degree-k MRF U as above implies GAC with
W-regulated cost. More precisely, we have:

Corollary 1 Assume hypotheses (H1)–(H2). Then, given a degree-k MRFU satisfying
the hypotheses of Theorem 1, system (9) is globally asymptotically controllable to T
withW-regulated cost, the map W being defined as

W(x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ U (x)

0
�(w) dw if k = 1,

�(ϕ−1(U (x)))
∫ U (x)

2

0
�(w) dw if k > 1,

(27)

where �, � are as in Theorem 1, and ϕ is as in Definition 11.

Theorem 1 and Corollary 1 include and extend several previous results on sufficient
conditions for sample stabilizability and GAC with (or without) a regulated cost, as
we illustrate in the following remarks.

Remark 8 (Case k = 1) If the cost multiplier p0 is a positive constant and k = 1, then
the function� as in hypothesis (H3) is trivially integrable and the integral-cost-bound
function � takes the form

�(R, v1, v2) = �(v1, v2) = 0 ∨ 1

p0

(
v1 − v2

2

)
for all (R, v1, v2) ∈ R

3
>0.

6 We point out that the notion of semiconcavity on R
n \ T introduced in Sect. 1.1 implies that, for any

c̄ > 0, there exists a semiconcavity constant η for U valid on Rn \ B(T , c̄).
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Actually, for k = 1 the proof of Theorem 1 below can be easily adapted (see Remark
2 and [15, 16]) to a general control system

ẏ = F(y, a), a ∈ A ⊂ R
m,

with A nonempty and compact and F continuous in both variables and locallyLipschitz
continuous in x , uniformly w.r.t. the control. Hence, in view of Remark 3, (iii), from
Theorem 1 and Cor. 1 we regain the results on sample stabilizability with regulated
cost and on GAC with regulated cost obtained in [21, 27], respectively (actually, with
a slightly sharper bound on the cost).

Remark 9 (Case k > 1) Point (i) of Theorem 1 (which does not concern a cost),
coincides with the result on (an apparently different notion of) degree-k sample stabi-
lizability in [15], as the twodefinitions are equivalent (seeRemark 3, (ii)). Furthermore,
Cor. 1 implies the result in [28], where the existence of a locally semiconcave degree-k
CLF was shown to guarantee GAC. Finally, in the general case with a cost, Cor. 1
also implies the result in [29], where a sketch is given of the fact that (under slightly
stronger assumptions than those assumed here) the existence of a degree-kMRF yields
GAC with regulated cost.

Remark 10 (Degree-k MRFs and STLC) Allowing p0 to be an increasing function of
u, on the one hand, significantly improves the estimate on the cost bound functionW.
On the other hand, it allows us to reformulate well-known Lie algebraic conditions for
the small time local controllability (STLC) of system (9) to T , requiring the distance
function to be a degree-k MRF. More specifically, let us consider the case l ≡ 1, that
is, the minimum time problem, and suppose that the distance function d is a degree-k
MRF for some p0, γ , and k ≥ 1, for which (H3) is valid. Then, for all x ∈ R

n \ T , d
satisfies the HJ dissipative inequality (21), which takes now the form

min
(B,g,sgn)∈F (k)

〈p, sgn B(g)(x)〉 ≤ −γ̃ (d(x)) ∀p ∈ ∂Pd(x), (28)

where γ̃ (r) := p0(r) + γ (r). It is easy to recognize that this condition, combined
with the integrability assumption in hypothesis (H3), leads back to well-known higher
order weak Petrov (i.e. Lie algebraic) conditions, sufficient for the STLC of the drift-
less control-affine system (9) to the closed target T . By the expression “weak", we
mean dissipative inequalities as (28), in which the dissipative rate γ̃ can be 0 at 0,
to distinguish them from the classical higher order Petrov conditions, in which γ̃ can
be replaced by a positive constant. In particular, for any R > 0 by (27) we get the
following estimate for the minimum time function T :

T (x) ≤

⎧⎪⎪⎨
⎪⎪⎩

∫ d(x)

0
�(w) dw if k = 1,

�̄

∫ d(x)
2

0
�(w) dw if k > 1
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for every x ∈ B(T , R), for a suitable constant �̄ > 0. In view of the definition (24) of
�,7 this result is entirely in line with well-known one (see e.g. [5, 8, 18, 19, 25, 26],
and references therein). In conclusion, our degree-k sample stabilizability sufficient
conditions include as a special case most of the sufficient conditions for STLC of
system (9) to an arbitrary closed set T in the literature. We point out that, considering
only p0 ≡ p̄0 positive constant, we would have γ̃ ≥ p̄0 > 0, so our conditions would
include just ordinary, i.e. non-weak, higher order Petrov conditions.

4 Proof of Theorem 1

Let us begin by proving statement (ii) of the thesis, in case k > 1. LetU : Rn \ T → R

be a degree-k MRF for some cost multiplier function p0 and some dissipative rate γ .
Furthermore, assume thatU is locally semiconcave onRn \T and satisfies hypothesis
(H3), the latter meaning that U is ν-semiconcave on B(T , c) \ T for some ν ∈ [0, 1]
and c > 0, and that � defined as in (24) is integrable on [0, u] for every u > 0.

4.1 A Degree-k Feedback Generator and Some Preliminary Estimates

Let us first establish how the function U is used to build a degree-k feedback gen-
erator. Note that in the HJ dissipative inequality (21) we can replace the proximal
subdifferential with the limiting subdifferential, namelywe can assume thatU satisfies

H [p0](k)(x, p,U (x)) ≤ −γ (U (x)) ∀x ∈ R
n \ T , ∀p ∈ ∂U (x). (29)

Indeed, U is locally semiconcave, thus locally Lipschitz continuous, and H [p0](k)(·)
is continuous.

Definition 16 (Degree-k U -feedback generator) Given U as specified above, choose
an arbitrary selection p(x) ∈ ∂U (x) for any x ∈ R

n\T . Then, a degree-k feedback
generator V : Rn \ T → F (k) is said to be a degree-k U -feedback generator if (see
Definition 12)

H
(
x, p0(U (x)), p(x),V(x)

)
≤ −γ (U (x)) for allx ∈ R

n \ T . (30)

Clearly, given a selection p(x) ∈ ∂U (x), a degree-k U -feedback generator V always
exists and is defined as a selection

V(x) ∈ argmin
(B,g,sgn)∈F (k)

H
(
x, p0(U (x)), p(x), (B, g, sgn)

)
∀x ∈ R

n \ T .

Remark 11 Let us point out that, in order to define a degree-k U -feedback generator
V it might be enough to assume the existence of a function U which satisfies, besides
the other properties, the HJ dissipative inequality in (29) just for only one selection
p(x) ∈ ∂U (x).

7 For U considered as a degree-k MRF with cost multiplier p̃0 and dissipative rate γ̃ , as in Remark 7.
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From now on, let a selection p(x) ∈ ∂U (x) and an associated degree-k U -feedback
generator V(x) = (Bx , gx , sgnx ) be given.

Let us define two U -dependent distance-like functions dU− , dU+ : R≥0 → R≥0
as the smallest distance of the target from the superlevel set {U ≥ u} and the largest
distance of the target from the sublevel set {U ≤ u}, respectively. Namely, for every
u ≥ 0 we set

dU−(u) := inf
{
d(x): x ∈ Rn \ T with U(x) ≥ u

}

dU+(u) := sup
{
d(x): x ∈ Rn \ T with U(x) ≤ u

}
.

(31)

It is immediate to see that dU− , dU+ are strictly increasing and satisfy

dU−(0) = lim
u→0+ dU−(u) = lim

u→0+ dU+(u) = 0 = dU+(0),

dU−(U(x)) ≤ d(x) ≤ dU+(U(x)) ∀x ∈ Rn \ T .
(32)

Furthermore, dU− , dU+ can be approximated from below and from above, respectively,
by continuous, strictly increasing functions that satisfy (32). Let us redefine dU− and
dU+ as such two approximations. Fix r , R > 0 such that r < R and set

ÛR := d −1
U− (R), R̃ := dU+(ÛR) = dU+ ◦ d −1

U− (R), (33)

so that B(T , R) ⊆ U−1([0, ÛR]) ⊆ B(T , R̃). Now, by applying Lemma 1 for this
R̃, we obtain that there exist some δ̄ = δ̄(R̃) and ω = ω(R̃) > 0 such that, for
any x ∈ U−1(]0, ÛR]) and t ∈ [0, δ̄], each V-multiflow yx,t is defined on [0, t] and
satisfies (12), i.e.

yx,t ([0, t]) ⊂ B(T , 2R̃),

∣∣∣∣∣yx,t (t) − x − sgnx Bx (gx )(x)
(
t

s

)	
∣∣∣∣∣ ≤ ω t

(
t

s

)	

,

(34)

where 	 = 	(x) = 	(Bx ), s = s(x) = s(Bx ), as in (13).
From the ν-semiconcavity of U on B(T , c) \ T and the local semiconcavity of U

on R
n \ T (which implies local Lipschitz continuity), it follows that, for the same R̃

as above, there exist C̄ = C̄(R̃) > 0 and LU = LU (R̃) > 0 such that, for every x ,
x̂ ∈ B(T , 2R̃)\T with sgm(x̂, x) ⊂ B(T , 2R̃)\T and |x̂ − x | ≤ θ (θ as in Definition
15), one has, for every p ∈ ∂U (x) (see (7) and (23))

U (x̂) −U (x) ≤ 〈p, x̂ − x〉 + C̄
(
1 ∨ 1

d(sgm(x̂,x))ν

)
|x̂ − x |2,

|p| ≤ LU .
(35)
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Finally, under hypothesis (H2) there are some M = M(R̃) > 0 and Ll = Ll(R̃) > 0,
such that, for all x̂ , x ∈ B(T , 2R̃), one has

|B(g)(x)| ≤ M ∀(B, g, sgn) ∈ F (k), |l(x̂, a) − l(x, a)| ≤ Ll |x̂ − x | ∀a ∈ A.

(36)

For brevity, we often omit to explicitly write the dependence of the constants δ̄, ω,
LU , M , and Ll (and of the constants derived from them) on R̃.

4.2 Estimating U IncrementsWhenV(x) has Degree � ≤ k

For every r ∈ [0, R], define

ûr := χ−1(d −1
U+ (r)

)
, (37)

where the map χ is defined by setting, for every u ≥ 0,

λ(u) := u ∨ u
1
k , χ(u) := u + 2λ(u). (38)

Notice that both λ and χ : R≥0 → R≥0 are continuous, strictly increasing, surjective,
χ(0) = λ(0) = 0, and χ(u) > u for all u > 0. By construction, we immediately get

T ⊂ U−1([0, ûr ]) ⊆ B(T , r) ⊂ B(T , R) ⊆ U−1([0, ÛR]) ⊆ B(T , R̃) ⊂ B(T , 2R̃).

As a consequence of Lemma 2 below, the degree-k MRF U is decreasing when
evaluated along any multiflow yx,t of the degree-k U -feedback generator V , with
x ∈ U−1([ûr , ÛR]) and t in an interval which depends on the degree 	 = 	(x) defined
as above.

Lemma 2 Fix an integer 	 ∈ {1, . . . , k}. Then, using the above notations, we obtain
that there exists some positive δ	(r) (= δ	(R̃, r), i.e. depending on R̃ as well) such
that, for any x ∈ U−1([ûr , ÛR]) verifying 	(x) = 	, and any t ∈ [0, δ	(r)], the
V-multiflow yx,t verifies

U (yx,t (t)) −U (x) + t	−1

s	
p0(U (x))

∫ t

0
l(yx,t (s), αx,t (s)) ds ≤ −γ (U (x))

2

t	

s	
,

(39)

d(yx,t (s)) ≤ 2R̃ ∀s ∈ [0, t],
8 and

ûr
2

≤ U (yx,t (t)) < U (x). (40)

8 Incidentally, note that there might exist s < t such that yx,t (s) ∈ T .
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Proof We begin by proving property (40). Let us set

δ0 := 1 ∧ δ̄ ∧ θ

M
, δ̂	(r) := û

1
	
r

(2(M + ω)LU )
1
	 ∨ LU M

. (41)

Fix x ∈ U−1([ûr , ÛR]) with degree 	(x) = 	. By the first relation in (34), for every
t ∈ [0, δ0] one has yx,t (s) ∈ B(T , 2R̃) for all s ∈ [0, t]. Hence, in view of (36) and
(41), one has |yx,t (s) − x | ≤ θ for all s ∈ [0, t]. Furthermore, the definition of LU

and the fact that U ≡ 0 on T imply that U (x) ≤ LUd(x). Therefore, since s ≥ 1, for
all times t ∈ [0, δ0 ∧ δ̂	(r)] the second relation in (34) yields

|yx,t (t) − x | ≤ (M + ωt)

(
t

s

)	

≤ (M + ω)t	 ≤ ûr
2LU

≤ U (x)

2LU

≤ d(x)

2
. (42)

As a first consequence, one has |U (yx,t (t)) − U (x)| ≤ ûr
2
. Since U (x) ≥ ûr , this

proves the left-hand side of (40).
Now let us prove (39). Since for any z ∈ B(x,d(x)/2) one has d(z) ≥ d(x)/2, and

(42) implies that sgm(x, yx,t (t))) ⊂ B(x,d(x)/2), one has

d(sgm(x, yx,t (t))) ≥ d(x)

2
≥ ûr

2LU

. (43)

Let now δ̌	(r) be the unique solution of the equation9

(
LU ω + LlM

2

)
δ + C̄(2LU )ν(M + ω)2

[(2LU ) ∧ ûr ]ν δ	 = γ (ûr )
2

, (44)

where (M and) Ll are as in (36), and set

δ	(r) := δ0 ∧ δ̂	(r) ∧ δ̌	(r). (45)

Using (30), (35), (43), (34), for any t ∈ [0, δ	(r)], we get ,10

U (yx,t (t)) −U (x) +
(
t	−1

s	

)
p0(U (x))

∫ t

0
l(yx,t (s), αx,t (s)) ds

≤ 〈p(x), yx,t (t) − x〉 + C̄ ∨ C̄
d(sgm(x,yx,t (t)))ν

|yx,t (t) − x |2

+
(
t	−1

s	

)
p0(U (x))

∫ t

0
max

a∈A(V(x))
l(yx,t (s), a)ds

9 The solution’s uniqueness follows from the trivial fact that the function of δ on the left-hand side of (44)
is strictly increasing and unbounded.
10 In view of hypothesis (H2) for any subset A′ ⊆ A the function x �→ maxa∈A′ l(x, a) is Ll -Lipschitz
continuous on B(T , 2R̃) \ T . Recall also that p0(·) and t are ≤ 1.
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≤
(
t

s

)	 [
〈p(x), sgnx Bx (gx )(x)〉 + LU ωt + p0(U (x)) max

a∈A(V(x))
l(x, a)

+ p0(U (x))LlM

2
t + C̄(2LU )ν(M + ωt)2

[(2LU ) ∧ ûr ]ν
(
t

s

)	
]

≤
(
t

s

)	 [
−γ (U (x)) +

(
LU ω + LlM

2

)
t + C̄(2LU )ν(M + ω)2

[(2LU ) ∧ ûr ]ν t	
]

≤
(
t

s

)	 [
−γ (U (x)) + γ (ûr )

2

]
≤ −γ (U (x))

2

(
t

s

)	

.

��
In the next lemma we determine two U -sublevel sets such that the V-multiflows

issuing from them remain in B(T , r) until a time that depends on the utilized iterated
Lie bracket.

Lemma 3 Fix an integer 	 ∈ {1, . . . , k}. Then, for λ and χ as in (38) and using the
above notations, for any x ∈ U−1(]0, ÛR]) with the degree 	(x) of V(x) equal to 	

and any t ∈ [0, δ	(r)], the V-multiflow yx,t satisfies (i) and (ii) below:

(i) if yx,t (t) ∈ U−1(]0, ûr ]) for some t ∈ [0, t], then U (yx,t (s)) ≤ ûr + λ(ûr ) for
any s ∈ [t, t], so that, in particular, d(yx,t (s)) ≤ r for any s ∈ [t, t];

(ii) if x ∈ U−1(]ûr , ûr + λ(ûr )]), then U (yx,t (s)) ≤ χ(ûr ) for any s ∈ [0, t], so that,
in particular, d(yx,t (s)) ≤ r for any s ∈ [0, t]. 11

Proof The proofs of (i) and (ii) follow the same lines, so we prove (ii) only. Let
x ∈ U−1(]ûr , ûr + λ(ûr )]). Since yx,t (s) ∈ B(T , 2R̃) for all s ∈ [0, t] and, in
particular, t ≤ δ̂	(r) as defined in (41), recalling the definition of λ one has

|U (yx,t (s)) −U (x)| ≤ LU |yx,t (s) − x | ≤ LU Ms ≤ λ(ûr ) ∀s ∈ [0, t].

Hence, U (yx,t (s)) ≤ χ(ûr ) for any s ∈ [0, t], by the definition of χ . In view of (32)
and (37), this implies that d(yx,t (s)) ≤ r for any s ∈ [0, t]. ��

4.3 Stabilizing d-ScaledV-Sampling Processes

Given 0 < r < R, set

d = d(R, r) := (δ1(r), . . . , δk(r)),

where δ	(r) is as in (45) for any 	 = 1, . . . , k.12 Let (x, π, απ
x , yπ

x ) be an arbitrary
d(R, r)-scaled V-sampling process such that d(x) ≤ R. Since the partition π =
(s j ) j∈N of R≥0 satisfies (17) (and B(T , R) ⊆ U−1(]0, ÛR])), thanks to the definition
11 Notice that ûr < ûr + λ(ûr ) < ÛR by definition.
12 The multirank d turns out to depend on R as well, because δ	 do depend on R̃, which is a function of R
by construction, for any 	 = 1 . . . , k.
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of d, Lemma 2 implies that (απ
x , yπ

x ) is an admissible control-trajectory pair from x ,
and

yπ
x (s) ∈ B(T , 2R̃) for alls ≥ 0. (46)

In particular, using the notations of Definitions 7 and 8, for every j ∈ N, 1 ≤ j ≤ j,
the V-multiflow yx j ,t j is defined on the whole interval [0, t j ], where

t j := s j − s j−1, x1 := x, x j+1 := yx j ,t j (s j − s j−1).

Hence, one has yπ
x (s j ) = x j+1 for all 0 ≤ j < j. (However, whenever j < +∞,

the trajectory yπ
x reaches for the first time the target T at some σj ∈]sj−1, sj]. In this

case, after σj, the pair (απ
x , yπ

x ) is extended constantly, while the j-th V-multiflow
remains defined as before, over the entire interval [sj−1, sj], so that we may well have
yπ
x (sj) = yπ

x (σj) �= xj+1.)
In the following lemma we provide an upper bound for the time taken by yπ

x to
reach the sublevel set U−1(]0, ûr [).

Lemma 4 Consider (x, π, απ
x , yπ

x ) as above. Then, one has

ιr := inf{ j ∈ N: U (yπ
x (s j )) < ûr } < +∞, (47)

and ιr ≤ j when j < +∞. Moreover,

sιr ≤ T(R, r) := β(k)
k

√
2(ÛR − ûr )J (R, r)k−1

γ (ûr )
+ 1, (48)

where β(k) is as in (8) and, for

μ(R, r) := min{δ	(r): 	 = 1, . . . , k}, (49)

J (R, r) is defined as13

J (R, r) :=
{[[

2(ÛR−ûr )β(k)k

γ (ûr )μ(R,r)k�(k)k

]]
+ 1 if k ≥ 2,

1 if k = 1.
(50)

Proof If j < +∞, one has by definition thatU (yπ
x (s j )) = 0 for every j ≥ j. Therefore,

ιr ≤ j < +∞. If j = +∞ and we assume by contradiction that ιr = +∞, then

13 We use [[·]] to denote the integer part.
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U (yπ
x (s j )) ≥ ûr for any j ∈ N. Hence, if we set 	 j := 	(yπ

x (s j−1)), and s j :=
s(yπ

x (s j−1)), by (39) and the monotonicity of γ , for any integer j ≥ 1, we have

ûr − ÛR ≤ U (yπ
x (s j )) −U (x) = [

U (yπ
x (s j )) −U (yπ

x (s j−1))
] + . . .

+ [
U (yπ

x (s1)) −U (x)
]

≤ −γ (U (yπ
x (s j−1)))

2

(
t j
s j

)	 j

− · · · − γ (U (x))

2

(
t1
s1

)	1

≤ − γ (ûr )
2β(k)k

[tk1 + · · · + tkj ],

(51)

where we have used that 1 ≥ (t j/s j )	 j ≥ (t j/β(k))k for any integer j ≥ 1. If k = 1,
then t1 + · · · + t j = s j → +∞ when j → +∞, by the very definition of partition of
R≥0. Otherwise, if k ≥ 2, (17) implies that tk1 + · · · + tkj ≥ μ(R, r)k�(k)k j , which
tends to +∞ as j → +∞. Hence, in both cases we reach a contradiction, so that
ιr < +∞.

Let us now prove (48). Using the Jensen inequality in (51), we deduce that

ÛR − ûr ≥ γ (ûr )
2β(k)k

skj
j k−1 (52)

for any j ≤ ιr − 1. Now, taking j = ιr − 1 and k = 1 in (52), we get (48) in the
particular case k = 1. Indeed, one has

sιr ≤ sιr−1 + δ1(R, r) ≤ 2(ÛR − ûr )
γ (ûr )

+ 1.

Let now k ≥ 2. Again by (51), as soon as j ≤ ιr − 1 we obtain

ÛR − ûr ≥ γ (ûr )
2β(k)k

μ(R, r)k�(k)k j .

In particular, taking j = ιr − 1 in the previous relation, we deduce that

ιr ≤ J (R, r), (53)

with J (R, r) as in (50). By (53), (52) we finally obtain (48) also for k ≥ 2. ��

We are now ready to show that the degree-k U -feedback generator V degree-k U -
sample stabilizes system (9) to T . Fix an arbitrary d(R, r)-scaled V-sampling process
(x, π, απ

x , yπ
x ) such that d(x) ≤ R, as above.

By (46) and (37), setting

�(R) := 2R̃ = dU+(d −1
U− (R)),
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we directly get the overshoot boundedness property (i) in Definition 11, namely
d(yπ

x (s)) ≤ �(R) for any s ≥ 0. Furthermore, the properties of the functions dU+ and
dU− (see (32)) imply that lim

R→0
�(R) = 0.

In order to prove the In order to prove theU -uniformattractiveness property (ii)-(iii),
observe that, by the very definition of ιr < +∞ in Lemma 4, one hasU (yπ

x (sιr )) ≤ ûr .
Accordingly, the time

t = t(yπ
x , r) := inf{s ≥ 0: U (yπ

x (s)) ≤ ûr }, (54)

(is finite and) satisfies

t ≤ sιr ≤ T(R, r), (55)

for T(R, r) as in (48). Set

ϕ(r) := ûr for anyr > 0. (56)

To conclude this step, it only remains to show condition (iii) in Definition 11, which
is equivalent to prove that

d(yπ
x (s)) ≤ r for anys ≥ t. (57)

Let j̄ ≥ 1 be the integer such that t ∈ [sj̄−1, sj̄[, so that, by Lemma 3, (i), one has that
U (yπ

x (s)) ≤ ûr + λ(ûr ) and d(yπ
x (s)) ≤ r for any s ∈ [t, sj̄]. Hence, either case (a)

or case (b) below occurs:

(a) U
(
yπ
x (sj̄)

)
≤ ûr .

(b) U (yπ
x (sj̄)) ∈]ûr , ûr + λ(ûr )].

Case (a). By Lemma 3, (i), it follows that d(yπ
x (s)) ≤ r for all s ∈ [sj̄, sj̄+1]. Then

either case (a) or case (b) above holds with j̄ + 1 replacing j̄.
Case (b). Arguing as in Lemma 4, we deduce that there exists an integer ι(j̄)

satisfying

ι(j̄) := inf{ j ∈ N: j ≥ j̄ + 1 and U
(
yπ
x (s j )

)
< ûr } < +∞.

In particular, by Lemma 2, the sequence
(
U (yπ

x (s j ))
)
j is decreasing for j̄ ≤ j ≤ ι(j̄)

and by Lemma 3, (ii), we get d(yπ
x (s)) ≤ r for all s ∈ [sj̄, sι(j̄)]. Moreover, in view of

Lemma 3, (i), we also have d(yπ
x (s)) ≤ r for all s ∈ [sι(j̄), sι(j̄)+1]. Then, either case

(a) or case (b) above holds with ι(j̄) + 1 replacing j̄.
The proof of (57) is thus concluded. In particular, let us point out that the con-

tinuity and monotonicity properties of the functions �, ϕ and T are straightforward
consequence of their very definitions and of the properties of the functions dU− and
dU+ .
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4.4 The Cost Boundedness Property

Let 0 < r < R and let (x, π, απ
x , yπ

x ,Iπ
x ) be an arbitrary d(R, r)-scaled V-sampling

process-cost such that d(x) ≤ R, associated with a d(R, r)-scaledV-sampling process
(x, π, απ

x , yπ
x ) as in the previous step. We use the same notations as above and, in

addition, set

u j := U (x j ) for any j ∈ N, 1 ≤ j ≤ j + 1.

Observe that from the previous lemmas it follows that

ûr ≤ uιr < uιr−1 < · · · < u1 = U (x),
ûr
2

≤ uιr+1 < uιr . (58)

To prove the uniform cost boundedness property (iv) in Definition 11, we need to
construct a integral-cost-bound function � = ��, such that

Iπ
x (t) =

∫ t

0
l(yπ

x (s), απ
x (s)) ds ≤ �(R)�(U (x), ϕ(r)),

where t is as in (54). When U (x) ≤ ϕ(r), the integral is zero (because t = 0) and the
estimate is trivial for every nonnegative �. Hence, let us supposeU (x) > ϕ(r) = ûr .
Since l ≥ 0, from (55), (58) and Lemma 2, we get

∫ t

0
l(yπ

x (s), απ
x (s))ds ≤

∫ sιr ∧Syπx

0
l(yπ

x (s), απ
x (s))ds

=
ιr−1∑
j=1

∫ s j

s j−1

l(yπ
x (s), απ

x (s))ds +
∫ sιr ∧σj

sιr−1

l(yπ
x (s), απ

x (s))ds

≤
ιr∑
j=1

s
	 j
j

t
	 j−1
j

u j − u j+1

p0(u j )
,

(59)

where Syπ
x
is as in Definition 2, so that Syπ

x
= σj, and, in particular,

∫ sιr ∧Syπx

sιr−1

l(yπ
x (s), απ

x (s))ds ≤
∫ sιr

sιr−1

l(yxιr ,tιr (s), αxιr ,tιr (s))ds

≤ (sιr )
	ιr (uιr − uιr+1)

(tιr )
	ιr −1 p0(uιr )

.

Define the function �̂ : {(v1, v2) ∈ R
2
>0 : v2 ≤ v1} → R>0, given by

�̂(v1, v2) := v1

v2
(≥ 1).
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For every j = 1, . . . , ιr + 1, recalling that ϕ(r)
2 ≤ u j ≤ U (x), we have

ϕ(r)

2�̂(U (x), ϕ(r))
≤ u j

�̂(U (x), ϕ(r))
≤ U (x)

�̂(U (x), ϕ(r))
= ϕ(r). (60)

Now, let us fix j ∈ {1, . . . , ιr +1} and let us estimate the quantity 1

t
	 j−1

j

. The definition

(44) implies that either

(
LU ω + LlM

2

)
δ̌	(r) ≥ γ (ϕ(r))

4

or

C̄(2LU )ν(M + ω)2

[(2LU ) ∧ ϕ(r)]ν (δ̌	(r))
	 ≥ γ (ϕ(r))

4
.

Thus, (17), (60) yield that

1

t
	 j−1
j

≤ 1

�(k)	 j−1

(
1

δ
	 j−1
0

∨ 1

(δ̌	 j )
	 j−1

∨ 1

(δ̂	 j )
	 j−1

)

≤ 1

�(k)k−1

[
1

δk−1
0

∨ 4C̄(2LU )ν(M + ω)2

γ 1− 1
k
( u j

�̂

)[
(2LU ) ∧ u j

�̂

]ν− ν
k

∨ 4LU ω + 2LlM

γ k−1
( u j

�̂

)

∨ (2LU (M + ω))1− 1
k ∨ (LU M)k−1

(
u j

�̂

)1− 1
k

⎤
⎥⎥⎦ ≤ �̃(R̃)

p0
( u j

�̂

)
β(k)k

�
(u j

�̂

)
,

(61)

where (� is as in (24) and) we have written �̂ in place of �̂(U (x), ϕ(r)) and we have
set

�̃(R̃) := β(k)k

�(k)k−1

(
1

δk−1
0

∨ 4C̄[(2LU )
ν
k ∨ (2LU )ν](M + ω)2

∨ (4LU ω + 2LlM) ∨ (
2LU (M + ω)

)1− 1
k ∨ (LU M)k−1

)
.
(62)

Note that �̃(R̃) depends on R̃ defined as in (37), likewise all constants δ0, C̄ , LU , M ,
ω, and Ll actually depend on R̃. Hence, from (59), (60), and the monotonicity of p0,
we get

∫ t

0
l(yπ

x (s), απ
x (s))ds ≤

ιr∑
j=1

s
	 j
j

t
	 j−1
j

u j − u j+1

p0(u j )
≤ �̃(R̃)

ιr∑
j=1

�
(u j

�̂

)
(u j − u j+1)

≤ �̃(R̃)

∫ U (x)

ϕ(r)
2

�
(w

�̂

)
dw = �(R)�(U (x), ϕ(r)),

(63)
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as soon as we set �(R) := �̃(R̃) (R̃ is in turn a function of R by (37)) and define
� : R2

>0 → R≥0, as

�(v1, v2) := 0 ∨
∫ v1

v2
2

�
(v2

v1
· w

)
dw, for any (v1, v2) ∈ R

2
>0. (64)

To complete the proof of statement (ii) in case k > 1, let us show that � is an
integral-cost-bound function. Given an arbitrary v̄ > 0, let us consider the bilateral
sequence (vi )i∈Z, given by

v1 = v̄, vi+1 = vi

2
∀i ∈ Z,

so that �̂(vi , vi+1) = 2 for all i . Thanks to hypothesis (H3), we have

+∞∑
i=1

�(vi , vi+1) =
+∞∑
i=1

∫ vi

vi+2

�
(w

2

)
dw =

+∞∑
i=1

∫ v̄

2i−1

v̄

2i+1

�
(w

2

)
dw

≤ 2
∫ v̄

0
�

(w

2

)
dw = 4

∫ v̄
2

0
�(w) dw < +∞.

(65)

Clearly,� is continuous and the required monotonicity and unboundedness properties
are immediate consequence of the definition of �. Similarly, � is increasing, hence it
can be approximated from above by a continuous increasing function, still denoted by
� with a small abuse of notation. Finally, when (together with and (H3)) hypothesis
(H2)∗ is satisfied and U is also Lipschitz continuous and semiconcave on R

n \ T , it
is easy to see that C̄ , LU , M , ω and Ll in (62) (as well as δ0 in (41)) no longer depend
on the compact set B(T , 2R̃), so that � turns out to be constant.

4.5 Sketch of the Proof of (i) for k ≥ 1 and of (ii) for k = 1

Let nowU be a degree-k MRF for some p0 and γ , and assumeU locally semiconcave
on Rn \ T .14

Consider a selection p(x) ∈ ∂U (x) and let V be a degree-k U -feedback generator.
Fix 0 < r < R and, using the above notations, define ÛR and R̃ as in (37), so that for
any x ∈ U−1(]0, ÛR]) and t ∈ [0, δ̄], each V-multiflow yx,t is defined on [0, t] and
satisfies (34). In particular, all constants δ̄, ω, M , and Ll as in (34), (36) are fixed, as
above, on the compact set B(T , 2R̃). The fundamental difference from the previous
proof is that the Lipschitz continuity and semiconcavity constants ofU can no longer
be defined up to the target, but on compact sets M ⊂ R

n \ T only.
For dU− and dU+ as in (31), set

ϕ(r) = ǔr := 1

2
d−1
U+(r), řr := 1

2
dU−

( ǔr
2

)
. (66)

14 Incidentally, with regard to the stabilizability issue, p0 plays no role.
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Accordingly, it holds

T ⊂ B(T , řr ) ⊂ B(T , 2řr ) ⊆ U−1
( ]

0,
ǔr
2

])
⊂ U−1(]0, ǔr ]) ⊂ U−1(]0, 2ǔr ])

⊆ B(T , r) ⊂ B(T , R) ⊆ U−1(]0, ÛR]) ⊆ B(T , R̃) ⊂ B(T , 2R̃).

Let us define

M := B(T , 2R̃) \ B(T , řr ),

and let ηM , LM > 0 be the semiconcavity and the Lipschitz constant of U on M,
respectively. Then, any V-multiflow yx,t starting from x ∈ U−1([ǔr , ÛR]) up to
t ≤ δ̄ ∧ řr

M ∧ ǔr
2LMM is such that

U (yx,t (t)) ≥ ǔr
2

, yx,t (s) ∈ M ∀s ∈ [0, t], sgm(x, yx,t (t)) ⊂ M. (67)

Indeed |U (yx,t (s)) − U (x)| ≤ LM |yx,t (s) − x | ≤ LMMs ≤ ǔr
2 for any s ∈ [0, t],

so that U (yx,t (s)) ≥ ǔr
2 for any s ∈ [0, t]. In view of (32), the first two relations in

(67) follow. The last property in (67) can be deduced by the facts that d(x) ≥ 2řr and
|yx,t (t) − x | ≤ Mt ≤ řr . Set

δ(R, r) := 1 ∧ δ̄ ∧ ǔr
2LMM

∧ řr
M

∧ γ (ǔr )
2(LMω + Ll M + ηM(M + ω)2)

,

(68)

Note that now δ(R, r) does not depend on 	. Suitably modifying the constants in
the proof of Lemma 2, it is possible to prove that any V-multiflow yx,t starting from
x ∈ U−1([ǔr , ÛR]) up to time t ≤ δ(R, r) satisfies inequality (39). Indeed, thanks to
(67) we can apply (7) in place of (23) and derive that

U (yx,t (t)) −U (x) + p0(U (x))
∫ t

0
l(yx,t (s), αx,t (s)) ds

(
t	−1

s	

)

≤
( t
s

)	[ − γ (U (x)) + t
(
LMω + Ll M + ηM(M + ω)2

)]
≤ −γ (U (x))

2

(
t

s

)	

.

From now on, the proof of (i) is a simple adaptation of the previous one, so we omit
it.

For what concerns the cost estimate in the case k = 1, arguing as above we simply
get

∫ t

0
l(yπ

x (s), απ
x (s))ds ≤

ιr∑
j=1

u j − u j+1

p0(u j )
≤

∫ U (x)

ϕ(r)
2

�(w) dw (69)
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where now �(w) = 1
p0(w)

for all w ≥ 0.

5 A General Dynamics in the Case k > 1

In Remark 8 we observed that, for the case k = 1, the extension of Theorem 1 to a
general system

ẏ = F(y, a), a ∈ A, (70)

is straightforward. The case k > 1 is much more involved. However, a first easy
extension can be achieved by still considering a driftless control-affine system but
with a control set of the following form

Ã :=
{
β1e1, . . . , βmem,−γ1e1, . . . ,−γmem s.t. βi , γi > 0, ∀i = 1, . . . ,m

}
.

For instance, the definitions of oriented controls for the case k = 1, 2 should be
replaced by the following ones:

(i) if 	B = 1, i.e. B = X j for some integer j ≥ 1, we set

α(X j ,g,+),t (s) := βi e
i for anys ∈ [0, t],

and

α(X j ,g,−),t (s) := −γi e
i for anys ∈ [0, t],

where i ∈ {1, . . . ,m} is such that B(g) = fi (i.e. g j = fi );
(ii) if 	B = 2, B = [X j , X j+1] and B(g) = [ fi1 , fi2 ] (namely, g j = fi1 and g j+1 =

fi2 ), we set

α(B,g,+),t (s) :=⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(X j ,g,+),
τ1
τ
t (s)

(
= βi1e

i1
)

s ∈ [0, τ1
τ
t[

α(X j+1,g,+),
τ2
τ
t

(
s − τ1

τ
t
) ( = βi2e

i2
)

s ∈ [ τ1
τ
t, τ1+τ2

τ
t[

α(X j ,g,−),
τ3
τ
t

(
s − τ1+τ2

τ
t
) ( = −γi1e

i1
)

s ∈ [ τ1+τ2
τ

t, τ1+τ2+τ3
τ

t[
α(X j+1,g,−),

τ4
τ
t

(
s − τ1+τ2+τ3

τ
t
) ( = −γi2e

i2
)

s ∈ [
τ1+τ2+τ3

τ
t, t

]

and

α(B,g,−),t (s) := −α(B,g,+),t (t − s) for anys ∈ [0, t],

where

τ1 = 1/βi1 , τ2 = 1/βi2 , τ3 = 1/γi1 , τ4 = 1/γi2 , τ = τ1 + τ2 + τ3 + τ4.
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It is easy to verify that the asymptotic formula (12) should be replaced by the (i1, i2)-
dependent inequality

∣∣∣∣∣y(t) − x − sgn B(g)(x)
(
t

τ

)2
∣∣∣∣∣ ≤ ω t

(
t

τ

)2

. (71)

For k > 2 one would proceed in an akin way, so that, by means of suitable notions
of the degree-k Hamiltonians, an extension of Theorem 1 would follow without any
other difficulty. An extension of the case k > 1 for control system (70) to a general
dynamics F and a general control set A, requires strong selection properties for the
set-valued map x � F(x, A). As a natural example, one could assume the existence
of a selection

F̌(x,C) ⊆ F(x, A) (72)

where F̌ is a driftless control-affine dynamics andC is like Ã, namely, for some integer
r > 1,

F̌(y, c) :=
r∑

i=1

f̌i (y) c
i , (c1, . . . , cr ) ∈ C,

( f̌1, . . . , f̌r are vector fields) and

C :=
{
β1e1, . . . , βr er ,−γ1e1, . . . ,−γr er s.t. βi , γi > 0, ∀i = 1, . . . , r

}
⊂ R

r .

Thanks to selection (72), a degree-k feedback generator for the control system ẏ =∑r
i=1 f̌i (y) ci , c ∈ C , defines a feedback lawalso for the original system ẏ = F(y, a),

a ∈ A. Hence, by defining Hamiltonians Ȟ [p0](h), h ≤ k, corresponding to the
dynamics F̌ in a way similar to (13), we obtain a result like Theorem 1, valid for the
system ẏ = F̌(y, c), c ∈ C , which in turn provides degree-k sample stabilizability
with regulated cost for the original system (70).

A non-trivial further generalization might concern control-affine systems with a
non-zero drift. Obviously, the corresponding degree-k Hamiltonian should be based
also on minimizations over sets including suitable brackets containing the drift among
their factors (see [28, Theorem 5.1]).

Finally, another interesting generalization might consist, still for a driftless control-
affine system ẏ = ∑m

i=1 fi (y) ai , in considering less regular vector fields f1, . . . , fm :
if B is a formal iterated bracket, in view of [14, Theorem 3.7] (see also [13]), an
asymptotic formula similar to (12) still holds provided B( f1, . . . , fm) is a L∞ map
(defined almost everywhere). In such a case one can make use of a set-valued iter-
ated Lie bracket Bset ( f1, . . . , fm), which happens to be upper semi-continuous. For
instance, in the case of the bracket [ f5, f7] with f5, f7 locally Lipschitz continuous,
the bracket [ f5, f7] is an L∞ map defined almost everywhere. The corresponding
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set-valued bracket is defined, for every x , as

[ f5, f7]set (x) := co{ lim
n→∞[ f5, f7](xn), xn → x},

where ‘co’ denotes the convex hull and the limits are intended for all sequences (xn)
converging to x made of differentiability points for both f5 and f7. This bracket has
revealed fit for extending various basic results on vector fields’ families (see [32, 33])
and might be useful also for an extension of the results of the present paper (see [28,
Theorem 4.1], and also [6] for the STLC’s issue).
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