6 research outputs found

    Challenges and opportunities for ELSI early career researchers

    Get PDF
    Background: Over the past 25 years, there has been growing recognition of the importance of studying the Ethical, Legal and Social Implications (ELSI) of genetic and genomic research. A large investment into ELSI research from the National Institutes of Health (NIH) Human Genomic Project budget in 1990 stimulated the growth of this emerging field; ELSI research has continued to develop and is starting to emerge as a field in its own right. The evolving subject matter of ELSI research continues to raise new research questions as well as prompt re-evaluation of earlier work and a growing number of scholars working in this area now identify themselves as ELSI scholars rather than with a particular discipline. Main text: Due to the international and interdisciplinary nature of ELSI research, scholars can often find themselves isolated from disciplinary or regionally situated support structures. We conducted a workshop with Early Career Researchers (ECRs) in Oxford, UK, and this paper discusses some of the particular challenges that were highlighted. While ELSI ECRs may face many of the universal challenges faced by ECRs, we argue that a number of challenges are either unique or exacerbated in the case of ELSI ECRs and discuss some of the reasons as to why this may be the case. We identify some of the most pressing issues for ELSI ECRs as: interdisciplinary angst and expertise, isolation from traditional support structures, limited resources and funding opportunities, and uncertainty regarding how research contributions will be measured. We discuss the potential opportunity to use web 2.0 technologies to transform academic support structures and address some of the challenges faced by ELSI ECRs, by helping to facilitate mentoring and support, access to resources and new accreditation metrics. Conclusion: As our field develops it is crucial for the ELSI community to continue looking forward to identify how emerging digital solutions can be used to facilitate the international and interdisciplinary research we perform, and to offer support for those embarking on, progressing through, and transitioning into an ELSI research career

    Challenges and opportunities for ELSI early career researchers

    No full text
    BackgroundOver the past 25 years, there has been growing recognition of the importance of studying the Ethical, Legal and Social Implications (ELSI) of genetic and genomic research. A large investment into ELSI research from the National Institutes of Health (NIH) Human Genomic Project budget in 1990 stimulated the growth of this emerging field; ELSI research has continued to develop and is starting to emerge as a field in its own right. The evolving subject matter of ELSI research continues to raise new research questions as well as prompt re-evaluation of earlier work and a growing number of scholars working in this area now identify themselves as ELSI scholars rather than with a particular discipline. Main textDue to the international and interdisciplinary nature of ELSI research, scholars can often find themselves isolated from disciplinary or regionally situated support structures. We conducted a workshop with Early Career Researchers (ECRs) in Oxford, UK, and this paper discusses some of the particular challenges that were highlighted. While ELSI ECRs may face many of the universal challenges faced by ECRs, we argue that a number of challenges are either unique or exacerbated in the case of ELSI ECRs and discuss some of the reasons as to why this may be the case. We identify some of the most pressing issues for ELSI ECRs as: interdisciplinary angst and expertise, isolation from traditional support structures, limited resources and funding opportunities, and uncertainty regarding how research contributions will be measured. We discuss the potential opportunity to use web 2.0 technologies to transform academic support structures and address some of the challenges faced by ELSI ECRs, by helping to facilitate mentoring and support, access to resources and new accreditation metrics. ConclusionAs our field develops it is crucial for the ELSI community to continue looking forward to identify how emerging digital solutions can be used to facilitate the international and interdisciplinary research we perform, and to offer support for those embarking on, progressing through, and transitioning into an ELSI research career.</p

    In vitro antibacterial effects of statins against bacterial pathogens causing skin infections

    No full text
    © 2018 Springer-Verlag GmbH Germany, part of Springer Nature With financial considerations impeding research and development of new antibiotics, drug repurposing (finding new indications for old drugs) emerges as a feasible alternative. Statins are extensively prescribed around the world to lower cholesterol, but they also possess inherent antimicrobial properties. This study identifies statins with the greatest potential to be repurposed as topical antibiotics and postulates a mechanism of action for statins’ antibacterial activity. Using broth microdilution, the direct antibacterial effects of all seven parent statins currently registered for human use and three selected statin metabolites were tested against bacterial skin pathogens Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Serratia marcescens. Simvastatin and pitavastatin lactone exerted the greatest antibacterial effects (minimum inhibitory concentrations of 64 and 128 µg/mL, respectively) against S. aureus. None of the statins tested were effective against E. coli, P. aeruginosa, or S. marcescens, but simvastatin hydroxy acid acid might be active against S. aureus, E. coli, and S. marcescens at drug concentrations &gt; 256 µg/mL. It was found that S. aureus may exhibit a paradoxical growth effect when exposed to simvastatin; thus, treatment failure at high drug concentrations is theoretically probable. Through structure-activity relationship analysis, we postulate that statins’ antibacterial action may involve disrupting the teichoic acid structures or decreasing the number of alanine residues present on Gram-positive bacterial cell surfaces, which could reduce biofilm formation, diminish bacterial adhesion to environmental surfaces, or impede S. aureus cell division

    Contractile Force Is Enhanced in Aortas from Pendrin Null Mice Due to Stimulation of Angiotensin II-Dependent Signaling

    Get PDF
    Pendrin is a Cl-/HCO3- exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus, the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However, application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice. Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion, pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation
    corecore