4 research outputs found

    Pharmacokinetics evaluation of nimotuzumab in combination with doxorubicin and cyclophosphamide in patients with advanced breast cancer

    Get PDF
    EGFr (Epidermal growth factor receptor) overexpression has been detected in many tumors of epithelial origin, specifically in breast cancer and it is often associated with tumor growth advantages and poor prognosis. The nimotuzumab is a genetically engineered humanized MAb (monoclonal antibody) that recognizes an epitope located in the extracellular domain of human EGFr. The aim of this study was to assess the pharmacokinetics of nimotuzumab in patients with locally advanced breast cancer who are receiving neoadyuvant therapy combined with the AC chemotherapy regimen (i.e., 60 mg/m2 of Doxorubicin and 600 mg/m2 of Cyclophosphamide in 4 cycles every 21 days). A single center, non-controlled, open Phase I clinical trial, with histopathological diagnosis of locally advanced stage III breast cancer, was conducted in 12 female patients. Three patients were enrolled at each of the following fixed dose levels: 50, 100, 200 and 400 mg/week. Multiple intermittent short-term intravenous infusions of nimotuzumab were administered weekly, except on weeks 1 and 10, when blood samples were drawn for pharmacokinetic assessments. Nimotuzumab showed dose-dependent kinetics. No anti-idiotypic response against nimotuzumab was detected in blood samples of participants. There was not interaction between the administration of nimotuzumab and chemotherapy at the dose levels studied. The optimal biological doses ranging were estimated to be 200 mg/weekly to 400 mg/weekly

    Efficacy of nimotuzumab according to inflammatory indices in patients with advanced non-small cell lung cancer

    Get PDF
    Introduction: The response to therapies in advanced lung cancer could be related to certain prognostic factors such as inflammatory indices. Objective: To evaluate the efficacy of the humanized monoclonal antibody nimotuzumab in patients with advanced non-small cell lung cancer according to inflammatory indices. Method: A retrospective longitudinal evaluation study was carried out in a universe of 498 patients older than 18 years, with a cytohistological diagnosis of non-small cell lung cancer, in advanced stages, after the first line of oncological therapy, including in multicenter clinical trials promoted by the Center for Molecular Immunology from 2002 to 2018. Descriptive statistics were applied, the x-tile 3.6.1 software was used for the Kaplan Meier test, significant differences were considered when p< 0,05. Results: In the patients analyzed, nimotuzumab showed therapeutic benefit in the group of patients who did not progress to the first line of treatment with chemotherapy or chemoradiotherapy, when they had a lower neutrophil-lymphocyte index (p= 0,017 and p= 0,027) and a lower platelet-lymphocyte index (p= 0,030 and p= 0,009). Conclusion: Selecting a patient with a lower inflammatory index benefits the efficacy of treatment with the humanized mAb nimotuzumab in advanced non-small cell lung cancer, which becomes a predictive tool for response to treatment

    Pharmacokinetics evaluation of nimotuzumab in combination with doxorubicin and cyclophosphamide in patients with advanced breast cancer

    No full text
    EGFr (Epidermal growth factor receptor) overexpression has been detected in many tumors of epithelial origin, specifically in breast cancer and it is often associated with tumor growth advantages and poor prognosis. The nimotuzumab is a genetically engineered humanized MAb (monoclonal antibody) that recognizes an epitope located in the extracellular domain of human EGFr. The aim of this study was to assess the pharmacokinetics of nimotuzumab in patients with locally advanced breast cancer who are receiving neoadyuvant therapy combined with the AC chemotherapy regimen (i.e., 60 mg/m2 of Doxorubicin and 600 mg/m2 of Cyclophosphamide in 4 cycles every 21 days). A single center, non-controlled, open Phase I clinical trial, with histopathological diagnosis of locally advanced stage III breast cancer, was conducted in 12 female patients. Three patients were enrolled at each of the following fixed dose levels: 50, 100, 200 and 400 mg/week. Multiple intermittent short-term intravenous infusions of nimotuzumab were administered weekly, except on weeks 1 and 10, when blood samples were drawn for pharmacokinetic assessments. Nimotuzumab showed dose-dependent kinetics. No anti-idiotypic response against nimotuzumab was detected in blood samples of participants. There was not interaction between the administration of nimotuzumab and chemotherapy at the dose levels studied. The optimal biological doses ranging were estimated to be 200 mg/weekly to 400 mg/weekly
    corecore