507 research outputs found

    A novel imidazole derivative: synthesis, characterization and chemosensory ability for ions

    Get PDF
    Imidazoles have been explored over the years as optical chemosensors for their ability to coordinate with analytes, through specific binding sites, especially for ions, provided by the nitrogen heteroatom. Consequently, a novel 2,4,5-triheteroarylimidazole was synthetized bearing indolyl and furyl moieties. The compound was characterized by the usual spectroscopic techniques, and the preliminary chemosensory ability was carried out in acetonitrile and acetonitrile/water (25:75) in the presence of ions with biological, medicinal and environmental relevance. In an aqueous medium, the new compound showed a slight enhancement of fluorescence in the presence of HSO4−. As for cations, an enhancement of the fluorescence was observed upon interaction with Fe2+, Sn2+, Fe3+ and Al3+. On the other hand, a quenching of fluorescence was observed in the presence of Cu2+.This research was funded by the Foundation for Science and Technology (FCT) for financial support to CQ/UM (UID/QUI/00686/2020). Thanks are also due to FCT for financial support to the Portuguese NMR Network (PTNMR, Bruker Avance III 400-Univ. Minho)

    Planned and unplanned towns in former Portuguese colonies in Sub-Sahara Africa : an analysis of Silveira's 'Iconografia'

    Get PDF
    Luis Silveira’s ‘Ensaio de Iconografia das Cidades Portuguesas do Ultramar’, published in the 50’s, is a fundamental source for the study of urban form in former Portuguese colonies. This is an often cited work and its images have been abundantly used. Nonetheless, it has not been analysed and considered in itself, as a unique and essential collection of images representing the most important Portuguese settlements outside Europe as well as noteworthy places connected to the Portuguese expansion or colonization periods. It presents a wealth of graphical information on the settlements which can be understood as town or future town centres. More than a thousand figures depict nearly two hundred towns. The second volume is dedicated to occidental and oriental Sub-Saharan Africa. This paper addresses form and content of this fundamental resource for the study of citycentres in the Portuguese ex-colonies – as seen through the eyes of a public official in the eve of the colonial wars.Department of Culture, Delegation of the Flemish Government in South Africa, Embassy of Belgiumhttps://africanperspectivesconference.wordpress.com

    Theoretical study of electric field-dependent polaron-type mobility in conjugated polymers

    Get PDF
    We have used a self-consistent quantum molecular dynamics approach to calculate the mobility of both positive and negative polaron-type carriers on solated chains of poly(p-phenylene vinylene) (PPV) and some of its derivatives and the dependence of their mobility on the applied electric field. Our results suggest that polaron-type mobility along most of these polymer chains has a clear dependence on the electric field which is quite different from the result derived for bulk PPV-based materials.Fundação para a CiĂȘncia e a Tecnologia (FCT) Programa Operacional “CiĂȘncia , Tecnologia, Inovação” – POCTI/CTM/41574/2001, CONC-REEQ/443/EEI/2001 e SFRH/BD/11231/200

    Conserved Central Domains Control the Quaternary Structure of Type I and Type II Hsp40 Molecular Chaperones

    Get PDF
    Hsp40s play an essential role in protein metabolism by regulating the polypeptide binding and release cycle of Hsp70. The Hsp40 family is large and specialized family members direct Hsp70 to perform highly specific tasks. Type I and Type II Hsp40s, such as yeast Ydj1 and Sis1, are homodimers that dictate functions of cytosolic Hsp70, but how they do so is unclear. Type I Hsp40s contain a conserved centrally located Cysteine-rich domain that is replaced by a Glycine and Methionine rich region in Type II Hsp40s, but the mechanism by which these unique domains influence Hsp40 structure and function is unknown. This is the case because high-resolution structures of full-length forms of these Hsp40s have not been solved. To fill this void we built low-resolution models of the quaternary structure of Ydj1 and Sis1 with information obtained from biophysical measurements of protein shape, small angle X-ray scattering and ab initio protein modeling. Low resolution models were also calculated for the chimeric Hsp40s YSY and SYS, in which the central domains of Ydj1 and Sis1 were exchanged. Similar to their human homologs, Ydj1 and Sis1 each has a unique shape with major structural differences apparently being the orientation of the J-domains relative to the long axis of the dimers. Central domain swapping in YSY and SYS correlates with the switched ability of YSY and SYS to perform unique functions of Sis1 and Ydj1, respectively. Models for the mechanism by which the conserved Cysteine-rich domain and Glycine and Methionine rich region confer structural and functional specificity to Type I and Type II Hsp40s are discussed

    Fine Structure of Avalanches in the Abelian Sandpile Model

    Full text link
    We study the two-dimensional Abelian Sandpile Model on a square lattice of linear size L. We introduce the notion of avalanche's fine structure and compare the behavior of avalanches and waves of toppling. We show that according to the degree of complexity in the fine structure of avalanches, which is a direct consequence of the intricate superposition of the boundaries of successive waves, avalanches fall into two different categories. We propose scaling ans\"{a}tz for these avalanche types and verify them numerically. We find that while the first type of avalanches has a simple scaling behavior, the second (complex) type is characterized by an avalanche-size dependent scaling exponent. This provides a framework within which one can understand the failure of a consistent scaling behavior in this model.Comment: 10 page

    From Coherent Modes to Turbulence and Granulation of Trapped Gases

    Full text link
    The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose-Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.Comment: Latex file, 25 pages, 4 figure

    Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x

    Get PDF
    A detailed study of inclusive deep inelastic scattering (DIS) from mirror A = 3 nuclei at large values of the Bjorken variable x is presented. The main purpose is to estimate the theoretical uncertainties on the extraction of the neutron DIS structure function from such nuclear measurements. On one hand, within models in which no modification of the bound nucleon structure functions is taken into account, we have investigated the possible uncertainties arising from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii) finite Q**2 effects neglected in the Bjorken limit, iii) the role of different prescriptions for the nucleon Spectral Function normalization providing baryon number conservation, and iv) the differences between the virtual nucleon and light cone formalisms. Although these effects have been not yet considered in existing analyses, our conclusion is that all these effects cancel at the level of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other hand we have considered several models in which the modification of the bound nucleon structure functions is accounted for to describe the EMC effect in DIS scattering from nuclei. It turns out that within these models the cancellation of nuclear effects is expected to occur only at a level of ~ 3%, leading to an accuracy of ~ 12 % in the extraction of the neutron to proton structure function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad range of models of the EMC effect is that the previously suggested iteration procedure does not improve the accuracy of the extraction of the neutron to proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in Section 4; no change in the conclusion

    Evolution of the nuclear spin-orbit splitting explored via the <sup>32</sup>Si<i>(d,p)</i><sup>33</sup>Si reaction using SOLARIS

    Get PDF
    The spin-orbit splitting between neutron 1p orbitals at 33Si has been deduced using the single-neutron-adding (d,p) reaction in inverse kinematics with a beam of 32Si, a long-lived radioisotope. Reaction products were analyzed by the newly implemented SOLARIS spectrometer at the reaccelerated-beam facility at the National Superconducting Cyclotron Laboratory. The measurements show reasonable agreement with shell-model calculations that incorporate modern cross-shell interactions, but they contradict the prediction of proton density depletion based on relativistic mean-field theory. The evolution of the neutron 1p-shell orbitals is systematically studied using the present and existing data in the isotonic chains of = 17, 19, and 21. In each case, a smooth decrease in the separation of the - orbitals is seen as the respective p-orbitals approach zero binding, suggesting that the finite nuclear potential strongly influences the evolution of nuclear structure in this region
    • 

    corecore