27,437 research outputs found

    An approach for the detection of point-sources in very high resolution microwave maps

    Full text link
    This paper deals with the detection problem of extragalactic point-sources in multi-frequency, microwave sky maps that will be obtainable in future cosmic microwave background radiation (CMB) experiments with instruments capable of very high spatial resolution. With spatial resolutions that can be of order of 0.1-1.0 arcsec or better, the extragalactic point-sources will appear isolated. The same holds also for the compact structures due to the Sunyaev-Zeldovich (SZ) effect (both thermal and kinetic). This situation is different from the maps obtainable with instruments as WMAP or PLANCK where, because of the smaller spatial resolution (approximately 5-30 arcmin), the point-sources and the compact structures due to the SZ effect form a uniform noisy background (the "confusion noise"). Hence, the point-source detection techniques developed in the past are based on the assumption that all the emissions that contribute to the microwave background can be modeled with homogeneous and isotropic (often Gaussian) random fields and make use of the corresponding spatial power-spectra. In the case of very high resolution observations such an assumption cannot be adopted since it still holds only for the CMB. Here, we propose an approach based on the assumption that the diffuse emissions that contribute to the microwave background can be locally approximated by two-dimensional low order polynomials. In particular, two sets of numerical techniques are presented containing two different algorithms each. The performance of the algorithms is tested with numerical experiments that mimic the physical scenario expected for high Galactic latitude observations with the Atacama Large Millimeter/Submillimeter Array (ALMA).Comment: Accepted for publication on "Astronomy & Astrophysics". arXiv admin note: substantial text overlap with arXiv:1206.4536 Replaced version is the accepted one and published in A&

    Projection effects in galaxy cluster samples: insights from X-ray redshifts

    Full text link
    Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX,500≥5×10−12f_\textrm{X,500}\geq 5\times10^{-12} erg s−1^{-1} cm−2^{-2} in the 0.1−2.40.1-2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected

    Latest results for the antikaon-nucleon optical potential

    Get PDF
    The key question of this letter is whether the K-nucleus optical potential is deep, as it is prefered by the phenomenological fits to kaonic atoms data, or shallow, as it comes out from unitary chiral model calculations. The current experimental situation is reviewed.Comment: 3 pages, 1 figure. Presented at the 21st European Conference on the Few-Body problems in Physics (EFB21), Salamanca, Spain, August 29 - September 3, 201

    Efeito da epoca de colheita e da vedacao da pastagem na producao de sementes de capim andropogon.

    Get PDF
    bitstream/item/96030/1/CT680001.pd
    • …
    corecore