28,212 research outputs found
Partial dynamical symmetry as a selection criterion for many-body interactions
We propose the use of partial dynamical symmetry (PDS) as a selection
criterion for higher-order terms in situations when a prescribed symmetry is
obeyed by some states and is strongly broken in others. The procedure is
demonstrated in a first systematic classification of many-body interactions
with SU(3) PDS that can improve the description of deformed nuclei. As an
example, the triaxial features of the nucleus 156Gd are analyzed.Comment: 5 pages, 3 figures, Phys. Rev. C, in pres
An approach for the detection of point-sources in very high resolution microwave maps
This paper deals with the detection problem of extragalactic point-sources in
multi-frequency, microwave sky maps that will be obtainable in future cosmic
microwave background radiation (CMB) experiments with instruments capable of
very high spatial resolution. With spatial resolutions that can be of order of
0.1-1.0 arcsec or better, the extragalactic point-sources will appear isolated.
The same holds also for the compact structures due to the Sunyaev-Zeldovich
(SZ) effect (both thermal and kinetic). This situation is different from the
maps obtainable with instruments as WMAP or PLANCK where, because of the
smaller spatial resolution (approximately 5-30 arcmin), the point-sources and
the compact structures due to the SZ effect form a uniform noisy background
(the "confusion noise"). Hence, the point-source detection techniques developed
in the past are based on the assumption that all the emissions that contribute
to the microwave background can be modeled with homogeneous and isotropic
(often Gaussian) random fields and make use of the corresponding spatial
power-spectra. In the case of very high resolution observations such an
assumption cannot be adopted since it still holds only for the CMB. Here, we
propose an approach based on the assumption that the diffuse emissions that
contribute to the microwave background can be locally approximated by
two-dimensional low order polynomials. In particular, two sets of numerical
techniques are presented containing two different algorithms each. The
performance of the algorithms is tested with numerical experiments that mimic
the physical scenario expected for high Galactic latitude observations with the
Atacama Large Millimeter/Submillimeter Array (ALMA).Comment: Accepted for publication on "Astronomy & Astrophysics". arXiv admin
note: substantial text overlap with arXiv:1206.4536 Replaced version is the
accepted one and published in A&
Excited-state quantum phase transitions in a two-fluid Lipkin model
Background: Composed systems have became of great interest in the framework
of the ground state quantum phase transitions (QPTs) and many of their
properties have been studied in detail. However, in these systems the study of
the so called excited-state quantum phase transitions (ESQPTs) have not
received so much attention.
Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is
presented in this work. The study is performed through the Hamiltonian
diagonalization for selected values of the control parameters in order to cover
the most interesting regions of the system phase diagram. [Method:] A
Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting
boson model (IBM) is diagonalized for selected values of the parameters and
properties such as the density of states, the Peres lattices, the
nearest-neighbor spacing distribution, and the participation ratio are
analyzed.
Results: An overview of the spectrum of the two-fluid Lipkin model for
selected positions in the phase diagram has been obtained. The location of the
excited-state quantum phase transition can be easily singled out with the Peres
lattice, with the nearest-neighbor spacing distribution, with Poincar\'e
sections or with the participation ratio.
Conclusions: This study completes the analysis of QPTs for the two-fluid
Lipkin model, extending the previous study to excited states. The ESQPT
signatures in composed systems behave in the same way as in single ones,
although the evidences of their presence can be sometimes blurred. The Peres
lattice turns out to be a convenient tool to look into the position of the
ESQPT and to define the concept of phase in the excited states realm
Intrinsic structure of two-phonon states in the interacting boson model
A general study of excitations up to two-phonon states is carried out using
the intrinsic-state formalism of the Interacting Boson Model (IBM). Spectra and
transitions for the different dynamical symmetries are analyzed and the
correspondence with states in the laboratory frame is established. The
influence of multi-phonon states is discussed. The approach is useful in
problems where the complexity of the IBM spectrum renders the analysis in the
laboratory frame difficult.Comment: 22 pages, TeX (ReVTeX). 7 eps figures. Submitted to Nucl. Phys.
Phase diagram of an extended Agassi model
Background: The Agassi model is an extension of the Lipkin-Meshkov-Glick
model that incorporates the pairing interaction. It is a schematic model that
describes the interplay between particle-hole and pair correlations. It was
proposed in the 1960's by D. Agassi as a model to simulate the properties of
the quadrupole plus pairing model.
Purpose: The aim of this work is to extend a previous study by Davis and
Heiss generalizing the Agassi model and analyze in detail the phase diagram of
the model as well as the different regions with coexistence of several phases.
Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov
(HFB) approximation, introducing two variational parameters that play the role
of order parameters. We also compare the HFB calculations with the exact ones.
Results: We obtain the phase diagram of the model and classify the order of
the different quantum phase transitions appearing in the diagram. The phase
diagram presents broad regions where several phases, up to three, coexist.
Moreover, there is also a line and a point where four and five phases are
degenerated, respectively.
Conclusions: The phase diagram of the extended Agassi model presents a rich
variety of phases. Phase coexistence is present in extended areas of the
parameter space. The model could be an important tool for benchmarking novel
many-body approximations.Comment: Accepted for publication in PR
An extended Agassi model: algebraic structure, phase diagram, and large size limit
The Agassi model is a schematic two-level model that involves pairing and
monopole-monopole interactions. It is, therefore, an extension of the well
known Lipkin-Meshkov-Glick (LMG) model. In this paper we review the algebraic
formulation of an extension of the Agassi model as well as its bosonic
realization through the Schwinger representation. Moreover, a mean-field
approximation for the model is presented and its phase diagram discussed.
Finally, a analysis, with proportional to the degeneracy of each
level, is worked out to obtain the thermodynamic limit of the ground state
energy and some order parameters from the exact Hamiltonian diagonalization for
finite.Comment: Accepted in Physica Scripta. Focus on SSNET 201
- …