4,992 research outputs found

    Acoustic Properties of Amorphous Solids at Very Low Temperatures: The Quest for Interacting Tunneling States

    Full text link
    We discuss the strain dependence of the acoustic properties of amorphous metals in both normal and superconducting states, in the temperature range 0.1 mK T1 \le T \le 1 K. A crossover is found when the strain energy is of the order of the effective interaction energy between tunneling systems at the corresponding temperature. Our results provide clear evidence for the interaction between tunneling systems, whose energy is in quantitative agreement with theoretical expectations, and reveal that without the knowledge of the corresponding strain dependences, the measured temperature dependences below 50\sim 50 mK of the acoustic properties of disordered solids are rather meaningless.Comment: 13 pages, 3 figure

    Nitrogen metabolism and gene expression landscape in maritime pine

    Get PDF
    This work was supported by the ProCoGen grant (FP7-KBBE-2011-5) and by the MicroNUpE grant (BIO2015-73512-JIN).Maritime pine (Pinus pinaster Aiton) is one the most important conifer species in the southwestern Mediterranean region because of its economic and environmental potential. For this reason, a work program in functional genomics has been developed in the frame of the ProCoGen project. One objective was to complete the knowledge about P. pinaster transcriptome with the tissue-specific localization of the gene expression of the low accumulated transcripts in sharper regions (Cañas et al. 2017). In order to reach these objectives total RNA was obtained from isolated tissues through laser capture microdissection (LCM). Due to the limiting amount from these extracts, the RNA samples were reverse-transcribed and the resultant cDNA amplified using our CRA+ protocol (Cañas et al. 2014). The obtained reads were assembled to improve the previous reference transcriptome. Reads were mapped against this transcriptome and the read accounts analyzed in order to found gene co-expression networks using the WGCNA software. These results have allowed us the characterization of nitrogen metabolism in maritime pine during the seedling stage stablishing relationships between the different components. This include the identification of new genes with low or very localized expression as occurred for the PpGS1c gene encoding a new cytosolic glutamine synthetase. From this starting point, we are developing a new project, MicroNUpE, to identify and study the genes involved in ammonium uptake and regulation in different root tissues that will be isolated through LCM. Cañas et al. (2017). Plant J, doi:10.1111/tpj.13617. Cañas et al. (2014). Tree Physiol, 34:1278-1288.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Analysis of NPF and NRT transporter families regarding the nitrate nutrition in maritime pine (Pinus pinaster)

    Get PDF
    Nitrogen is an essential element for life and the main limiting nutrient for plant growth and development1. The main forms of inorganic nitrogen in soils are nitrate and ammonium, which relative abundances depend on environmental conditions such as temperature. In agricultural soils the most abundant nitrogen form is nitrate because the use of chemical fertilizers however in natural ecosystems nitrogen soil composition can be more complex. Conifers are tree gymnosperms with a wide distribution although their large forests dominate the boreal ecosystems where nitrification is limited and ammonium is the main nitrogen soil source2. In this context, conifers have an appreciable tolerance to ammonium. Maritime pine (Pinus pinaster Aiton) is a conifer from the western Mediterranean region of high economic and ecological interest in Spain, France and Portugal. This pine is also a research model tree with different genomic resources such as a reference transcriptome and a gene expression atlas3. Taking advantage of these resources the members of the NPF and NRT transporter families involved in nitrate uptake and transport have been identified and analyzed in maritime pine4. Among the transporter families, the NRT3 one is expanded and composed by six members. The capacity of maritime pine to use nitrate or ammonium has been analyzed in seedlings. The development and growth responses to nitrate nutrition are comparable to ammonium supply. At molecular level, there are strong gene expressions for genes involved in nitrate uptake and assimilation such as Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase 1a, three NRT3 genes and different NPF family members in the different organs. Since the NPF proteins can transport different metabolites, peptides and hormones, the NPF transporters involved in nitrate transport are being identified.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This project was supported by the grant MicroNUpE, BIO2015-73512-JIN; MINECO/AEI/FEDER, UE. JMVM was supported by a grant from the Spanish Ministerio de Educación y Formación Profesional (FPU17/03517) and FO by a grant from the Universidad de Málaga (Programa Operativo de Empleo Juvenil vía SNJG, UMAJI11, FEDER, FSE, Junta de Andalucía)

    Poverty measures and poverty orderings

    Get PDF
    We examine the conditions under which unanimous poverty rankings of income distributions can be obtained for a general class of poverty indices. The “per-capita income gap” and the Shorrocks and Thon poverty measures are particular members of this class. The conditions of dominance are stated in terms of comparisons of the corresponding TIP curves and areas.Peer Reviewe

    Transcriptomics of ammonium nutrition in the conifer Pinus pinaster Aiton

    Get PDF
    Nitrogen is an important element for all living beings because it is part of macromolecules as significant as nucleic acids or amino acids. For plants, it constitutes a limiting factor in their growth and development1 due to their low natural availability in soils thus limiting primary production in ecosystems2. Conifers are a group of gymnosperm plants that form large forest extensions of vegetation, being the main constituents of forests in boreal ecosystems3 where ammonium is the main source of inorganic nitrogen4. Due to the characteristics of the soils in which conifers usually grow, these plants have developed a high tolerance to the presence of ammonium, which may constitute their main source of inorganic nitrogen5. The maritime pine (Pinus pinaster Aiton) is a conifer that has a wide distribution in the western Mediterranean area and has been widely used in reforestation, soil stabilization tasks and industrially. In recent years, maritime pine has been the subject of multiple omic studies that have resulted in the acquisition of important tools and resources6,7. The present work is focused on the analysis of the ammonium uptake and management efficiency, and its relationship with the biomass accumulation in maritime pine. For this purpose, several experiments have been developed in which pine seedlings have undergone different levels of ammonium nutrition, both in the short and long term. As a result of short-term experiments, the characterization of transcriptomic response to the process of ammonium nutrition (uptake and assimilation) is being studied at mRNA, lncRNA and miRNA level in roots. In relation to long-term experiments, ten different provenances of maritime pine seedlings were treated with different ammonium levels and the biomass changes were measured. The results obtained suggest the existence a certain phenotypic plasticity grade for this conifer.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This project was supported by a grant form the Spanish Ministerio de Ciencia, Innovación y Universidades (MicroNUpE, BIO2015-73512-JIN; MINECO/AEI/FEDER, UE). FO was supported by a grant from the Universidad de Málaga (Programa Operativo de Empleo Juvenil vía SNJG, UMAJI11, FEDER, FSE, Junta de Andalucía) and JMVM by a grant from the Spanish Ministerio de Educación y Formación Profesional (FPU17/03517

    Transcriptional regulation os phenylalaline biosynthesis and utilization

    Get PDF
    Conifer trees divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood. Since phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and utilization should occur simultaneously. This crucial pathway is finely regulated primarily at the transcriptional level. Transcriptome analyses indicate that the transcription factors (TFs) preferentially expressed during wood formation in plants belong to the MYB and NAC families. Craven-Bartle et al. (2013) have shown in conifers that Myb8 is a candidate regulator of key genes in phenylalanine biosynthesis involved in the supply of the phenylpropane carbon skeleton necessary for lignin biosynthesis. This TF is able to bind AC elements present in the promoter regions of these genes to activate transcription. Constitutive overexpression of Myb8 in white spruce increased secondary-wall thickening and led to ectopic lignin deposition (Bomal et al. 2008). In Arabidopsis, the transcriptional network controlling secondary cell wall involves NAC-domain regulators operating upstream Myb transcription factors. Functional orthologues of members of this network described have been identified in poplar and eucalyptus, but in conifers functional evidence had only been obtained for MYBs. We have identified in the P. pinaster genome 37 genes encoding NAC proteins, which 3 NAC proteins could be potential candidates to be involved in vascular development (Pascual et al. 2015). The understanding of the transcriptional regulatory network associated to phenylpropanoids and lignin biosynthesis in conifers is crucial for future applications in tree improvement and sustainable forest management. This work is supported by the projects BIO2012-33797, BIO2015-69285-R and BIO-474 References: Bomal C, et al. (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot. 59: 3925-3939. Craven-Bartle B, et al. (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J, 74: 755-766. Pascual MB, et al. (2015) The NAC transcription factor family in maritime pine (Pinus pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol, 15: 254.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore