73 research outputs found

    Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    Get PDF
    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.The South African National Research Foundation (NRF 88303) and the University of Pretoria.http://www.nature.com/scientificreportsam201

    Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench)

    Get PDF
    Culture-independent studies rely on the quantity and quality of the extracted environmental metagenomic DNA (mDNA). To fully access the plant tissue microbiome, the extracted plant mDNA should allow optimal PCR applications and the genetic contentmust be representative of the total microbial diversity. In this study,we evaluated the endophytic bacterial diversity retrieved using different mDNA extraction procedures. Metagenomic DNA from sorghum (Sorghum bicolor L. Moench) stem and root tissues were extracted using two classical DNA extraction protocols (CTAB- and SDS-based) and five commercial kits. The mDNA yields and quality as well as the reproducibility were compared. 16S rRNA gene terminal restriction fragment length polymorphism (t-RFLP) was used to assess the impact on endophytic bacterial community structures observed. Generally, the classical protocols obtained high mDNA yields from sorghum tissues; however, they were less reproducible than the commercial kits. Commercial kits retrieved higher quality mDNA, but with lower endophytic bacterial diversities compared to classical protocols. The SDS-based protocol enabled access to the highest sorghumendophytic diversities. Therefore, “SDS-extracted” sorghum root and stem microbiome diversities were analysed via 454 pyrosequencing, and this revealed that the two tissues harbour significantly different endophytic communities. Nevertheless, both communities are dominated by agriculturally important genera such as Microbacterium, Agrobacterium, Sphingobacterium, Herbaspirillum, Erwinia, Pseudomonas and Stenotrophomonas; which have previously been shown to play a role in plant growth promotion. This study shows that DNA extraction protocols introduce biases in culture-independent studies of environmental microbial communities by influencing the mDNA quality, which impacts the microbial diversity analyses and evaluation. Using the broad-spectrum SDSbased DNA extraction protocol allows the recovery of the most diverse endophytic communities associated with sorghum tissues and, as such, establishes a reliable basis for future study of endophytic communities.South African National Research Foundation (NRF) Grant No: 71081.http://www.elsevier.com/locate/jmicmeth2016-05-31hb201

    Migrating microbes : what pathogens can tell us about population movements and human evolution

    Get PDF
    BACKGROUND: The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen’s genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. METHODS: This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. RESULTS: Three stories are then presented of germs on a journey. The first is the story of HIV’s spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. CONCLUSIONS: Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.CJH was funded by the University of Cambridge. JBR was funded by the University of Pretoria and the South African National Research Foundation (ERTTG 2016 grant UID 105197). RFR was funded by the National Geographic Society/Waitt Fecundation Scientific Exploration Grant (Nr. W420-15) and the University of Pretoria. SJU was funded by Oxford Brookes University.http://www.tandfonline.com/loi/iahb202018-06-30hj2017Genetic

    Nutrient Acquisition, Rather Than Stress Response Over Diel Cycles, Drives Microbial Transcription in a Hyper-Arid Namib Desert Soil

    Get PDF
    Hot desert surface soils are characterized by extremely low water activities for large parts of any annual cycle. It is widely assumed that microbial processes in such soils are very limited. Here we present the first metatranscriptomic survey of microbial community function in a low water activity hyperarid desert soil. Sequencing of total mRNA revealed a diverse and active community, dominated by Actinobacteria. Metatranscriptomic analysis of samples taken at different times over 3 days indicated that functional diel variations were limited at the whole community level, and mostly affected the eukaryotic subpopulation which was induced during the cooler night hours. High levels of transcription of chemoautotrophic carbon fixation genes contrasted with limited expression of photosynthetic genes, indicating that chemoautotrophy is an important alternative to photosynthesis for carbon cycling in desiccated desert soils. Analysis of the transcriptional levels of key N-cycling genes provided strong evidence that soil nitrate was the dominant nitrogen input source. Transcriptional network analyses and taxon-resolved functional profiling suggested that nutrient acquisition processes, and not diurnal environmental variation, were the main drivers of community activity in hyperarid Namib Desert soil. While we also observed significant levels of expression of common stress response genes, these genes were not dominant hubs in the co-occurrence network

    A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches

    Get PDF
    A co-extraction protocol that sequentially isolates core biopolymer fractions (DNA, RNA, protein) from edaphic microbial communities is presented. In order to confirm compatibility with downstream analyses, bacterial T-RFLP profiles were generated from the DNA- and RNA-derived fractions of an arid-based soil, with metaproteomics undertaken on the corresponding protein fraction.National Research Foundation Grant no. 81779 (South Africa).http://www.elsevier.com/ locate/jmicmethhb2016Genetic

    Metagenomics of extreme environments

    Get PDF
    Whether they are exposed to extremes of heat, cold, or buried deep beneath the Earth‟s surface, microorganisms have an uncanny ability to survive under these conditions. This ability to survive has fascinated scientists for nearly a century, but the recent development of metagenomics and „omics tools has allowed us to make huge leaps in understanding the remarkable complexity and versatility of extremophile communities. Here, in the context of the recently developed metagenomic tools, we discuss recent research on the community composition, adaptive strategies and biological functions of extremophiles.South African National Research Foundation and the University of Pretoria (Research Development) Genomics Research Institute.http://www.sciencedirect.com/science/journal/136952742016-06-30hb201

    The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert

    Get PDF
    Notwithstanding, the severe environmental conditions, deserts harbour a high diversity of adapted micro-organisms. In such oligotrophic environments, soil physicochemical characteristics play an important role in shaping indigenous microbial communities. This study investigates the edaphic bacterial communities of three contrasting desert terrain types (gravel plains, sand dunes and ephemeral rivers) with different surface geologies in the Central Namib Desert. For each site, we evaluated surface soil physicochemistries and used explorative T-RFLP methodology to get an indication of bacterial community diversities. While grain size was an important parameter in separating the three terrain types physicochemically and specific surface soil types could be distinguished, the desert edaphic bacterial communities displayed a high level of local spatial heterogeneity. Ten variables contributed significantly (P < 0.05) to the variance in the T-RFLP data sets: fine silt, medium and fine sand content, pH, S, Na, Zn, Al, V and Fe concentrations, and 40% of the total variance could be explained by these constraining variables. The results suggest that local physicochemical conditions play a significant role in shaping the bacterial structures in the Central Namib Desert and stress the importance of recording a wide variety of environmental descriptors to comprehensively assess the role of edaphic parameters in shaping microbial communities.University of Pretoria and the South African National Research Foundation (NRF).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1472-46692016-09-30hb201

    Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members

    Get PDF
    Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease; referred to as Normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages.National Research Foundation (NRF) of South Africa (BlueSkies program 81693).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1472-765X2016-04-30hb201

    Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters

    Get PDF
    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2 = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2 ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.The South African National Research Foundation (Grant Number N00113-95565) and the University of Pretoria (UP).http://link.springer.com/journal/7922018-01-31hb2017Genetic

    Namib Desert primary productivity is driven by cryptic microbial community N-fixation

    Get PDF
    Carbon exchange in drylands is typically low, but during significant rainfall events (wet anomalies) drylands act as a C sink. During these anomalies the limitation on C uptake switches from water to nitrogen. In the Namib Desert of southern Africa, the N inventory in soil organic matter available for mineralisation is insufficient to support the observed increase in primary productivity. The C4 grasses that flourish after rainfall events are not capable of N fixation, and so there is no clear mechanism for adequate N fixation in dryland ecosystems to support rapid C uptake. Here we demonstrate that N fixation by photoautotrophic hypolithic communities forms the basis for the N budget for plant productivity events in the Namib Desert. Stable N isotope (δ15N) values of Namib Desert hypolithic biomass, and surface and subsurface soils were measured over 3 years across dune and gravel plain biotopes. Hypoliths showed significantly higher biomass and lower δ15N values than soil organic matter. The δ15N values of hypoliths approach the theoretical values for nitrogen fixation. Our results are strongly indicative that hypolithic communities are the foundation of productivity after rain events in the Namib Desert and are likely to play similar roles in other arid environments.The South African National Research Foundation (Grant number: N00113-95565) and the University of Pretoria (Research and Development Programme for J-BR).http://www.nature.com/srepam2018BiochemistryGeneticsMammal Research InstituteMicrobiology and Plant Patholog
    • …
    corecore