A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches

Authors: Eoin Gunnigle¹, Jean-Baptiste Ramond¹, Aline Frossard¹, Mary Seeley² and Don Cowan¹*

1. Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University

of Pretoria, South Africa.

2. Gobabeb Research and Training Centre, Walvis Bay, Namibia.

Running title: Soil co-extraction method for meta-omic approaches

*Author for correspondence:

Tel: +27 (0)12 420 5873

e-mail: don.cowan@up.ac.za

Abstract

A co-extraction protocol is presented that sequentially isolates core biopolymer fractions (DNA, RNA, protein) from edaphic microbial communities. In order to confirm compatibility with downstream analyses, bacterial T-RFLP profiles were generated from the DNA- and RNA- derived fractions of an arid-based soil, with metaproteomics undertaken on the corresponding protein fraction.

Keywords: Co-extraction; Nucleic acids; Protein; T-RFLP; Metaproteomics

Soil-based microorganisms drive key subsurface bioprocesses, including chemical and nutrient cycles (**Bell et al., 2014**), decomposition and mineralisation pathways (**Moore et al., 2010**) and the removal of pollutants (**Bissett et al., 2013**). For studying edaphic microorganisms an array of methods are available to recover nucleic acids from the soil matrix (**Paulin et al., 2013**; **Petric et al., 2011**), with recent developments in protein isolation (**Keiblinger et al., 212**). However, there is still a fundamental lack of methods available for isolating each fraction concurrently for parallel downstream molecular analyses. This method gap is not comparable with the rapid advances made in high-resolution omic-based technologies (Jansson *et al., 2012*). Indeed, an integrative systems-based strategy, whereby multiple omic-datasets (metagenomic, metatranscriptomic and metaproteomic) are employed holds significant promise for elucidating discrete microbial community dynamics (**Muller et al., 2012**), such as the linkage of metabolic processes with functional phylotypes (**Yu & Zhang, 2012**). Here we present a co-extraction protocol for the simultaneous recovery of each biopolymer fraction from individual soil samples. This method should facilitate the effective and reproducible application of system-based approaches for studying diverse soil habitats.

Two types of soil samples were used, reflecting distinct environmental regimes. Soil type-A; oligotrophic dry-land soil from the Namib Desert (23°33' S, 15°02' E), Soil type-B; organic rich soil from a local site in Gauteng, South Africa (25°45' S, 28°13' E). Specific characteristics for each soil-type are presented (**Table 1**). For molecular analysis, each soil sample (~10 g) was first supplemented with 50% (v/v) RNAlater at the point of sampling (Sigma-Aldrich, Copenhagen, Denmark), in order to preserve RNA and protein for further analysis (**Rodrigo** *et al.*, 2002; Saito *et al.*, 2011).

A method adapted from **Griffiths** *et al.* **(2000)** was used to recover the nucleic acid fraction from each soil sample. One-gram aliquots of powdered soil (-20°C; IKA[®] A11 homogeniser) were transferred to sterile 2 ml screw cap tubes (WhiteSci, Gauteng, SA). Ten grams was required for Soil type-A, while only 1 g of soil was required to recover sufficient DNA, RNA and protein from Soil type-B. Thereafter, 0.5 ml of a 10% (w/v) hexadecyltrimethylammonium

3

	рН	Sand/Silt/ Clay (%)	CEC ^a	org C (%)	DNA yield (ng/µl)	DNA quality (A260/280)	RNA yield (ng/µl)	RNA quality (A260/280)	Protein yield (ng/µl)
Soil type-A	6.7	85/11/4	5.2	0.07	123.3 (±12.2)	1.62 (±0.05)	86.9 (±9.3)	1.42 (±0.05	504.4 (±46.5)
Soil type-B	8.1	57/17/26	22.1	1.34	96.8 (±17.8)	1.52 (±0.02)	39.6 (±7.4)	1.51 (±0.02)	690.2 (±90.1)

Table 1 Soil characteristics and extract data

^a Cation exchange capacity Standard deviation is in parenthesis reflecting 3 replicates each. bromide (CTAB; Merck, Gauteng, SA) extraction buffer (10 mM Tris, 0.1 mM EDTA, 0.7M NaCl, 5 mM MgCl₂; pH 8) and 0.5 ml phenol:chloroform:isoamyl alcohol (25:24:1; pH 8; Sigma) was added to each 2 ml sample tube. Each tube was also supplemented with 0.25 g of zirconia beads (0.1 and 0.5 mm; BioSpec, Bartlesville, OK, USA). Cell lysis was achieved by bead beating, with the aqueous phase pooled and phenol removed by a chloroform-isoamyl alcohol (24:1) phase separation (**Fig. 1A**) Total nucleic acids were precipitated by 30% polyethylene glycol 8000 (Sigma) -1.6M NaCl at 10°C for 2 h with 70% (v/v) ice-cold ethanol wash steps (twice).

The organic phase containing the protein was also pooled and retained in a separate tube at 4°C. Residual liquid was removed from the original sample tubes containing the soil and 0.5 ml of fresh 1% sodium dodecyl sulphate (SDS; Merck) extraction buffer (10 mM Tris, 5 mM MgCl₂; pH 8), supplemented with protease inhibitor cocktail (10 μ l/ml; Sigma) was added (**Fig. 1A**). A second bead-beating extraction step was applied with subsequent centrifugation and benzonase treatment (250U/ μ l; Sigma) undertaken on the pooled supernatants to remove any remaining nucleic acids. Thereafter, an additional phenol:chloroform:isoamyl alcohol (25:24:1; pH 8) step was applied to partition the organic phase, which was then added to the organic fraction from the first extraction step (**Fig. 1A**). Five volumes of 0.1M ammonium acetate in methanol was used to precipitate the protein (-20°C, overnight) with additional washing steps using ice-cold methanol (twice) and acetone (80% v/v; twice). The resulting pellets were resolubilised in 6M guanidine buffer supplemented with 10mM DTT 10mM Tris 5mM CaCL₂ (pH 8) with 1 min of sonication (sonicator bath VWR USC2600).

Successful co-extraction of DNA and RNA was confirmed and quantified using a Nanodrop 1000 spectrophotometer (NanoDrop Products, Wilmington, DE, USA) and gel electrophoresis (**Table 1**; **Fig. 1B**). Average yields for oligotrophic Soil type-A were between 5 and 6 μ g of DNA and 3 to 4 μ g of RNA per g (dry weight) soil, comparable to previous studies where nutrient-rich soil was used (**Mettel** *et al.*, **2010**; **Wang** *et al.*, **2009**). In order to determine the effectiveness of this co-extraction protocol, Subsequent molecular analysis of Soil-Type A was performed.

Figure 1 (A) Workflow of the sequential co-extraction protocol for the isolation of (B) nucleic acids with (C) T-RFLP profiles generated and (D) protein with metaproteomic functional categories for Soil-type B shown.

Reverse transcription (RT) of total RNA was undertaken using a method adapted from **Corgié** *et al.* (2006). Prior to cDNA generation, the RNA was further purified (RNeasy; Qiagen, GmbH, Hilden, Germany). The incorporation of this step was crucial for successful cDNA generation, as without it no cDNA could be detected by subsequent PCR analysis. The 16S rRNA gene was amplified using the bacterial primers 341F-FAM and 908R (**Angel** *et al.*, 2010) for both DNA and cDNA. The PCR reactions and conditions were as described by **Makhalanyane** *et al.* (2013). Overall, 57 DNA-based operational taxonomic units (OTUs) were identified, with 48 RNA-based OTUs recorded (**Fig. 1C**). These results were consistent with recent studies where commercial DNA extraction kits were employed (**Makhalanyane** *et al.* 2013; **Stomeo** *et al.*, 2013), suggesting that representative phylogenetic information was recovered from oligotrophic soil using this approach. We noted that 21 OTUs were unique for the RNA-derived cDNA samples, confirming the importance of incorporating metatranscriptomics for comprehensive community analyses in arid systems.

Protein samples from Soil-type A were reduced, digested and processed for Q-Exactive LC-MS/MS analysis (**Fig. 1D**). Through this novel gel-free metaproteomic workflow, a total of 110 proteins were identified with significant protein scores (*P* < 0.05) from Mascot searches of peptide mass fingerprints against the NCBInr database. This level of resolution is comparable with a recent soil metaproteomic study (**Lin** *et al.***, 2013**). Proteins assigned to both archaeal and bacterial groups were identified, representing various functional categories including biosynthesis, DNA repair and membrane transport (**Fig. 1D**; **Table 2**). The identification of numerous proteins assigned to methanogens (e.g. HMD; Q02394, ACDA1; Q49161) was surprising and merits further detailed analysis to determine the presence and functional capacity of methanogens in near-surface arid-based soil communities.

Acknowledgements

We gratefully acknowledge financial support from the National Research Foundation (South Africa). We would also like to thank the support staff at the Gobabeb Research and Training Center, Namibia, the DNA sequencing facility (seqlab) and the Genomics Research Institute

7

Accession number	Protein name	Score ^a	Num. of matches ^b	Putative Biological function	Phylogenetic classification	(Family/Phylum)			
Archaea									
Antiviral									
CAS2B_SULSO	CRISPR-associated endoribonuclease	32	2	Antiviral defence	Sulfolobaceae	Crenarchaeota			
Biosynthesis	S								
G1PDH_IGNH4	Glycerol-1-phosphate dehydrogenase	41	38	Lipid biosynthesis	Desulfurococcaceae	Crenarchaeota			
COFD_HALMA	2-phospho-L-lactate transferase	34	33	Cofactor biosynthesis	Halobacteriaceae	Euryarchaeota			
F16PA_NATPD	Fructose-1,6-bisphosphatase	33	4	Carbohydrate biosynthesis	Halobacteriaceae	Euryarchaeota			
HEM3_PYRAE	Probable porphobilinogen deaminase	31	18	Porphyrin-containing compound metabolism	Thermoproteaceae	Crenarchaeota			
IDI2_PYRHO	Isopentenyl-diphosphate delta-isomerase	30	79	Isoprene biosynthesis	Thermococcaceae	Euryarchaeota			
SYI_SULAC	IsoleucinetRNA ligase	27	34	Protein biosynthesis	Sulfolobaceae	Crenarchaeota			
TYSY_METJA	Putative thymidylate synthase	25	9	Nucleotide biosynthesis	Methanocaldococcaceae	Euryarchaeota			
THIM_PYRAB	Hydroxyethylthiazole kinase	24	36	Thiamine biosynthesis	Thermococcaceae	Euryarchaeota			
GCST_PYRKO	Probable aminomethyltransferase	23	11	Glycine catabolic process	Thermococcaceae	Euryarchaeota			
GATD_METST	Glutamyl-tRNA(Gln) amidotransferase subunit D	23	23	Protein biosynthesis	Methanobacteriaceae	Euryarchaeota			
ASPD_UNCMA	Probable L-aspartate dehydrogenase	23	83	Pyridine nucleotide biosynthesis	Uncultured methanogenic archaeon	Euryarchaeota			
PYRC SULTO	Dihydroorotase	22	40	Pyrimidine biosynthesis	Sulfolobaceae	Crenarchaeota			
PDXS_META3	Pyridoxal biosynthesis lyase	21	8	Pyridoxal phosphate biosynthetic process	Methanococcaceae	Euryarchaeota			
COBY_METJA	Adenosylcobinamide-phosphate guanylyltransferase	21	28	Cobalamin biosynthesis	Methanocaldococcaceae	Euryarchaeota			
VATA_META3	V-type ATP synthase alpha chain	20	31	ATP synthesis	Methanococcaceae	Euryarchaeota			
GATE_NATPD	Glutamyl-tRNA(Gln) amidotransferase subunit E	20	11	Protein biosynthesis	Halobacteriaceae	Euryarchaeota			
G1PDH_PYRIL	Glycerol-1-phosphate dehydrogenase	20	6	Lipid biosynthesis	Thermoproteaceae				
IF1A_METJA	Translation initiation factor 1A	19	40	Protein biosynthesis	Methanocaldococcaceae	Euryarchaeota			
GFPS_METMA	Geranylfarnesyl diphosphate synthase	18	21	Isoprenoid biosynthetic process	Methanosarcinaceae	Euryarchaeota			
ADEC_METKA	Adenine deaminase	18	10	Adenine catabolic process	Methanopyraceae	Euryarchaeota			

Table 2 Proteins identified in Soil type-A organic fraction

ARLY_METST	Argininosuccinate lyase	17	32	Amino-acid biosynthesis	Methanobacteriaceae	Euryarchaeota
EF1A_METMP	Elongation factor 1-alpha	16	14	Protein biosynthesis	Methanocaldococcaceae	Euryarchaeota
PYRH_PYRIL	Uridylate kinase	15	39	Pyrimidine biosynthesis	Thermoproteaceae	Crenarchaeota
COFH_METM5	FO synthase subunit 2	15	6	Coenzyme F0 biosynthesis	Methanocaldococcaceae	Euryarchaeota
GGR1_METTH	Digeranylgeranylglycerophospholipid	14	10	Lipid biosynthesis	Methanobacteriaceae	Euryarchaeota
	reductase					-
SYFB_PYRAB	PhenylalaninetRNA ligase	13	7	Protein biosynthesis	Thermococcaceae	Euryarchaeota
Chaperones				-		-
DNAK_METTP	Chaperone protein DnaK	40	40	Heat shock	Methanosaetaceae	Euryarchaeota
RAD50_THEAC	DNA double-strand break repair Rad50	27	72	DNA repair	Thermofilaceae	Crenarchaeota
	ATPase					
PFDA_HYPBU	Prefoldin subunit alpha	16	26	Protein folding	Pyrodictiaceae	Crenarchaeota
SMC_PYRFU	Chromosome partition protein Smc	16	25	DNA repair	Thermococcaceae	Euryarchaeota
CBPX2_SULSO	Thermostable carboxypeptidase	15	21	Proteolysis	Sulfolobaceae	Crenarchaeota
CO ₂ Fixation						
CAPPA_SULAC	Phosphoenolpyruvate carboxylase	28	103	CO ₂ fixation	Sulfolobaceae	Crenarchaeota
Energy						
TIAS_METV3	tRNA(IIe2) 2-agmatinylcytidine synthetase	16	10	ATP binding	Methanococcaceae	Euryarchaeota
Methanogen	esis					
ACDA1_METM	Acetyl-CoA decarbonylase/synthase	27	21	Methanogenesis from acetate	Methanosarcinaceae	Euryarchaeota
A	complex subunit alpha					
HMD_METTH	5,10-methenyltetrahydromethanopterin	26	5	Methanogenesis from CO ₂	Methanobacteriaceae	Euryarchaeota
	hydrogenase					
HMD_METKA	5,10-methenyltetrahydromethanopterin	14	3	Methanogenesis from CO ₂	Methanopyraceae	Euryarchaeota
	hydrogenase					
Transcription	n & Translation					
ECX2_ARCFU	Probable exosome complex exonuclease	29	40	RNA catabolic process	Archaeoglobaceae	Euryarchaeota
DPOL_THELI	DNA polymerase	26	33	DNA replication	Thermococcaceae	Euryarchaeota
PCNA_THESM	DNA polymerase sliding clamp	15	9	DNA replication	Thermococcaceae	Euryarchaeota
PRIL_METKA	Probable DNA primase large subunit	21	88	DNA replication	Methanopyraceae	Euryarchaeota
RS8_THEPD	30S ribosomal protein S8	19	26	Translation	Thermofilaceae	Crenarchaeota
PCNA_METBF	DNA polymerase sliding clamp	19	12	DNA replication	Methanosarcinaceae	Euryarchaeota
RL31_AERPE	50S ribosomal protein L31e	18	13	Translation	Desulfurococcaceae	Crenarchaeota
RL37_METST	50S ribosomal protein L37e	17	9	Translation	Methanobacteriaceae	Euryarchaeota
FTSZ1_PYRW	Cell division protein FtsZ	15	19	Cell division	Thermococcaceae	Euryarchaeota
0						

TF2B2_PYRKO	Transcription initiation factor IIB 2	14	8	Transcription	Thermococcaceae	Euryarchaeota
DP2L_METHJ	DNA polymerase II large subunit	13	63	DNA replication	Methanospirillaceae	Euryarchaeota
Transport						-
SRP54_HALLT	Signal recognition particle 54 kDa protein	52	47	Insertion of nascent membrane	Halobacteriaceae	Euryarchaeota
				proteins into the cytoplasmic		
				membrane		
MTAD_THEON	5-methylthioadenosine/S-	24	4	Metal ion binding	Thermococcaceae	Euryarchaeota
	adenosylhomocysteine deaminase					
Y4342_METAC	Putative ABC transporter ATP-binding	23	18	Transport - cell membrane	Methanosarcinaceae	Euryarchaeota
	protein					
Y427_METS3	UPF0095 protein Msm_0427	15	6	Magnesium ion binding	Methanobacteriaceae	Euryarchaeota
			Bact	teria		
Biosynthesis	S					
PDXA_GEOMG	4-hydroxythreonine-4-phosphate	55	38	Pyridoxine biosynthesis	Geobacteraceae	Proteobacteria
	dehydrogenase					
PURA_CAMLR	Adenylosuccinate synthetase	7	3	Purine biosynthesis	Campylobacteraceae	Proteobacteria
LEU1_SYNR3	2-isopropylmalate synthase	42	22	Amino-acid biosynthesis	Synechococcaceae	Cyanobacteria
TRPE_HELPJ	Anthranilate synthase component 1	41	32	Amino-acid biosynthesis	Helicobacteraceae	Proteobacteria
EX7L_SHESA	Exodeoxyribonuclease 7 large subunit	39	11	DNA catabolic process	Shewanellaceae	Proteobacteria
LEU3_THIDA	3-isopropylmalate dehydrogenase	39	32	Amino-acid biosynthesis	Hydrogenophilaceae	Proteobacteria
SYD_HELMI	AspartatetRNA ligase	37	12	Protein biosynthesis	Heliobacteriaceae	Firmicutes
CBID_PROMA	Putative cobalt-precorrin-6A synthase	36	10	Cobalamin biosynthesis	Synechococcaceae	Cyanobacteria
GUAA_ANAVT	GMP synthase [glutamine-hydrolyzing]	34	20	Purine biosynthesis	Nostocaceae	Cyanobacteria
ASSY_BORPE	Argininosuccinate synthase	34	17	Amino-acid biosynthesis	Alcaligenaceae	Proteobacteria
UBIA_ACIET	4-hydroxybenzoate octaprenyltransferase	33	12	Ubiquinone biosynthesis	Comamonadaceae	Proteobacteria
COAE_BURMA	Dephospho-CoA kinase	32	7	Coenzyme A biosynthesis	Burkholderiaceae	Proteobacteria
KAD_DESPS	Adenylate kinase	31	14	Nucleotide biosynthesis	Desulfobulbaceae	Proteobacteria
YEGS_XANCP	Probable lipid kinase YegS	31	19	Lipid biosynthesis	Xanthomonadaceae	Proteobacteria
RF3_ECO24	Peptide chain release factor 3	31	12	Protein biosynthesis	Enterobacteriaceae	Proteobacteria
DAPB_LACPL	4-hydroxy-tetrahydrodipicolinate reductase	30	14	Amino-acid biosynthesis	Lactobacillaceae	Firmicutes
GUAA_MOOTA	GMP synthase [glutamine-hydrolyzing]	27	42	Purine biosynthesis	Thermoanaerobacteriace	Firmicutes
				-	ae	
GCH4_AZOVD	GTP cyclohydrolase FolE2	27	13	Cofactor biosynthesis	Pseudomonadaceae	Proteobacteria
PLSX_AZOC5	Phosphate acyltransferase	26	12	Lipid biosynthesis	Xanthobacteraceae	Proteobacteria
SYL_BACWK	LeucinetRNA ligase	22	7	Protein biosynthesis	Bacillaceae	Firmicutes

METX_PSEE4 LPXK_BARHE	Homoserine O-acetyltransferase Tetraacyldisaccharide 4'-kinase	21 19	5 12	Amino-acid biosynthesis Lipid biosynthesis	Pseudomonadaceae Bartonellaceae	Proteobacteria Proteobacteria
ACCA_HELP2	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha	18	4	Fatty acid biosynthesis	Helicobacteraceae	Proteobacteria
GATA_SYNY3	Glutamyl-tRNA(Gln) amidotransferase subunit A	16	13	Protein biosynthesis	Oscillatoriophycideae	Cyanobacteria
Chaperones						
ADDA_MOOTA	ATP-dependent helicase/nuclease subunit A	26	4	DNA repair	Thermoanaerobacteriace ae	Firmicutes
General meta	abolism					
PTH_RICB8	Peptidyl-tRNA hydrolase	36	89	Aminoacyl-tRNA hydrolase activity	Rickettsiaceae	Proteobacteria
ERA_ALKMQ	GTPase Era	34	35	Ribosome biogenesis	Clostridiaceae	Firmicutes
RLMG_SHEPA	Ribosomal RNA large subunit methyltransferase	33	5	rRNA processing	Shewanellaceae	Proteobacteria
OCD_AGRT4	Ornithine cyclodeaminase	33	47	Lyase	Rhizobiaceae	Proteobacteria
XYND_BACSU	Arabinoxylan arabinofuranohydrolase	29	3	Carbohydrate metabolic process	Bacillaceae	Firmicutes
NAGB_CORU7	Glucosamine-6-phosphate deaminase	28	11	Carbohydrate metabolism	Corynebacteriaceae	Actinobacteria
CITD1_SALPA	Citrate lyase acyl carrier protein 1	27	5	Lyase	Enterobacteriaceae	Proteobacteria
MI43_MYCIT	27 kDa lipoprotein antigen	23	5	Lipoprotein	Mycobacteriaceae	Actinobacteria
PGK_LISIN	Phosphoglycerate kinase	29	11	Glycolysis	Listeriaceae	Firmicutes
PGK_ONYPE	Phosphoglycerate kinase	26	10	Glycolysis	Acholeplasmataceae	Tenericutes
GLPK_MYCCT	Glycerol kinase	25	35	Glycolysis	Mycoplasmataceae	Firmicutes
PGK_MESSB	Phosphoglycerate kinase	25	11	Glycolysis	Phyllobacteriaceae	Proteobacteria
ENO_PROM4	Enolase	25	4	Glycolysis	Synechococcaceae	Cyanobacteria
Membrane p	roteins					
HFLD_AZOVD	High frequency lysogenization protein HfID homolog	31	5	Negative regulator of phage lysogenization	Pseudomonadaceae	Proteobacteria
YABM_BACSU	Uncharacterized membrane protein YabM	21	7	Transmembrane transport	Bacillaceae	Firmicutes
Nitrogen fixa	tion			-		
NIFM_KLEOX	Putative peptidyl-prolyl cis-trans isomerase NifM	28	14	Nitrogen fixation	Enterobacteriaceae	Proteobacteria

	Pathogenes	is					
	LOVHK_PŠES	Blue-light-activated protein	29	7	Virulence	Pseudomonadaceae	Proteobacteria
	M						
	HLYE_ECOLI	Hemolysin E, chromosomal	23	11	Pathogenesis	Enterobacteriaceae	Proteobacteria
	Transcriptio	on & translation					
	RL3_MYCCT	50S ribosomal protein L3	37	22	Translation	Mycoplasmataceae	Firmicutes
	RS2_WOLPM	30S ribosomal protein S2	31	44	Translation	Rickettsiaceae	Proteobacteria
	RTCA_ECOHS	RNA 3'-terminal phosphate cyclase	30	4	RNA processing	Enterobacteriaceae	Proteobacteria
	RL28_HYDS0	50S ribosomal protein L28	26	4	Translation	Aquificaceae	Aquificae
	NREC_STAEQ	Oxygen regulatory protein NreC	24	3	Transcription	Staphylococcaceae	Firmicutes
	Transport				·		
	LIPA_PSEFS	Lipoyl synthase	33	24	Transferase	Pseudomonadaceae	Proteobacteria
	PSTS_XYLFA	Phosphate-binding protein PstS	33	10	Phosphate transport	Xanthomonadaceae	Proteobacteria
	SECA_BLOFL	Protein translocase subunit SecA	31	23	Protein transport	Burkholderiaceae	Proteobacteria
	SECB_SHEON	Protein-export protein SecB	29	6	Protein transport	Shewanellaceae	Proteobacteria
	RNFA_SODGM	Electron transport complex protein RnfA	24	7	Electron transport	Enterobacteriaceae	Proteobacteria
	PRMA_PROM2	Ribosomal protein L11 methyltransferase	24	10	Transferase	Synechococcaceae	Cyanobacteria
	PNP_NEIM0	Polyribonucleotide nucleotidyltransferase	23	2	Transferase	Neisseriaceae	Proteobacteria
	NUOB1_ROSC	NADH-quinone oxidoreductase subunit B	19	11	Electron transport	Chloroflexaceae	Chloroflexi
	S						
	UREF ALHEH	Urease accessory protein UreF	16	2	Nickel cation binding	Ectothiorhodospiraceae	Proteobacteria
	Unknown				Ŭ		
	Y159_HAEIN	Uncharacterized protein HI_0159	25	6	Unknown	Pasteurellaceae	Proteobacteria
-		ON/CE agains (Magaat Matrix Calanas)					

^a MS/MS MOWSE score (Mascot, Matrix Science) ^b Number of identified peptides

at the University of Pretoria. We would also like to acknowledge Dr. Mare Vlok and Dr. Zac McDonald at the Centre for Proteomics and Genomics Research (CPGR), Cape Town for their work in developing the metaproteomic method.

References

- Angel, R., Soares, M.I.N., Ungar, E.D., Gillor, O., 2010. Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J. 4, 553-563.
- Bell, C.W., Tissue, D.T., Loik, M.E., Wallenstein M.D., Acosta-Martinez, V., Erickson, R.A., Zak, J.C., 2014. Soil microbial and nutrient responses to seven years of seasonally altered precipitation in a Chihuahuan Desert grassland. Glob. Chan. Biol. 20, 1657-1673.
- Bissett, A., Brown, M.V., Siciliano, S.D., Thrall, P.H., 2013. Microbial community responses to anthropogenically induced environmental change: towards a systems approach.
 Ecol. Lett. 16, 128-139.
- Griffiths, R.I., Whiteley, A.S., O'Donnell, A.G., Bailey, M.J., 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNAand rRNA-based microbial community composition. App. Environ. Microbiol. 66, 5488-5491.
- Jansson, J.K., Neufeld, J.D., Moran, M.A., Gilbet, J.A., 2012. Omics for understanding microbial functional dynamics. Environ. Microbiol. 14, 1–3.
- Keiblinger, K.M., Wilhartitz, I.C., Schneider, T., Roschitzki, B., Schmid, S., Eberl, L., Riedel,
 K., Zechmeister-Boltenstern, S., 2012. Soil metaproteomics e Comparative evaluation
 of protein extraction protocols. Soil Biol. Biochem. 54, 14-24.
- Lin, W., Wu, L., Lin, S., Zhang, M., Lin, R., Wang, H., Chen, J., Zhang, Z., Lin, R., 2013. Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol. 13, 135.
- Makhalanyane, T.P., Valverde, A., Birkeland, N.K., Cary, S.C., Tuffin, A.I., Cowan, D.A., 2013. Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J. 7, 2080-2090.
- Mettel, C., Kim, Y., Malla Shrestha, P., Liesack, W., 2010. Extraction of mRNA from Soil. App. Environ. Microbiol. 76, 5995-6000.
- Moore, J., Macalady, J.L., Schulz, M.S., White, A.F., Brantley, S.L., 2010. Shifting microbial community structure across a marine terrace grassland chronosequence, Santa Cruz, California. Soil Biol. Biochem. 42 (1), 21-31.

- Muller, E.E.L., Glaab, E., May, P., Vlassis, N., Wilmes, P., 2013. Condensing the omics fog of microbial communities. Trends Microbiol. 21, 325-333.
- Paulin, M.M., Nicolaisen, M.H., Jacobsen, C.S., Gimsing, A.L., Sorensen, J., Baelum, J.,
 2013. Improving Griffith's protocol for co-extraction of microbial DNA and RNA in adsorptive soils. Soil Biol. Biochem. 63, 37-49.
- Petric, I., Philippot, L., Abbate, C., Bispo, A., Chesnot, T., Hallin, S., Laval, K., Lebeau, T.,
 Lemanceau, P., Leyval, C., Lindstrom, K., Pandard, P., Romero, E., Sarr, A., Schloter,
 M., Simonet, P., Smalla, K., Wilke, B.M., Martin-Laurent, F., 2011. Inter-laboratory
 evaluation of the ISO standard 11063 "Soil quality e method to directly extract DNA
 from soil samples". J. Microbiol. Meth. 84, 454e460.
- Rodrigo, M.C., Martin, D.S., Rebecca M., Redetzke, R.A., Eyster, K.M., 2002. A method for the extraction of high-quality RNA and protein from single small samples of arteries and veins preserved in RNAlater. J. Pharmacol. Toxicol. Meth. 47, 87–92.
- Saito, M.A., Bulygin, V.V., Moran, D.M., Taylor, C., Scholin, C., 2011. Examination of microbial proteome preservation techniques applicable to autonomous environmental sample collection. Micro. Proteom.Pres. Techn. 2, 215.
- Stomeo, F., Valverde, A., Pointing, S.B., McKay, C.P., Warren-Rhodes, K.A., 2013. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extrem. 17, 329–337.
- Wang, Y., Morimoto, S., Ogawa, N., Oomori, T., Fujii, T., 2009. An improved method to extract RNA from soil with efficient removal of humic acids. J. App. Microbiol. 107, 1168-1177.
- Yu, K., Zhang, T., 2012. Metagenomic and Metatranscriptomic Analysis of Microbial Community Structure and Gene Expression of Activated Sludge. PLoS One 7, e38183.