7 research outputs found

    Overlap of Antibiotic Resistant Campylobacter jejuni MLST Genotypes Isolated From Humans, Broiler Products, Dairy Cattle and Wild Birds in Lithuania

    Get PDF
    Antimicrobial resistance was determined for 341 thermophilic Campylobacter jejuni isolates obtained from human clinical cases (n = 101), broiler products (n = 98), dairy cattle (n = 41) and wild birds (n = 101) with known multilocus sequence types (MLST) in Lithuania. The minimum inhibitory concentration (MIC) values for ciprofloxacin, tetracycline, gentamicin, ceftriaxone and erythromycin were determined with the agar dilution method. MIC values were compared with MLST types to find possible associations among isolation source, sequence type and resistance to antibiotics. The proportions of resistant strains were 94.2% (human), 95% (wild birds), 100% (broiler products) and 100% (dairy cattle) for one of the tested antibiotics. Most frequently, resistance to ciprofloxacin was observed (91.5%), followed by ceftriaxone with 60.4%, and tetracycline (37.8%). However only three C. jejuni strains were resistant to erythromycin (0.9%) and all tested thermophilic Campylobacter strains were sensitive to gentamicin. Most of the examined C. jejuni isolates (80.6%) showed resistance to at least one of three profiles: CIP+AXO (28.1%), TET+CIP+AXO (26.7%) and CIP (25.8%). Statistically significant differences in resistance to tetracycline were found between C. jejuni strains obtained from cattle (85.4%) and broiler products (64.3%) (P < 0.05). The majority (87.1%) of the tested strains from wild birds were resistant to ciprofloxacin (P < 0.05). The results showed that strains of novel ST’s showed significantly lower resistance to ceftriaxone (P < 0.05). The ST-21 (CC21) (78.8%) was identified with significantly higher multidrug resistance relatively to other tested ST’s in this study. Our results emphasize the high antimicrobial resistance of phylogenetically diverse C. jejuni strains isolated from different sources including specific genotypes of wild bird’s strains in Lithuania. The results support the opinion that not only broiler products but cattle and wild birds may be a reservoir of resistant C. jejuni and stipulate a risk of spread or resistant bacteria. There is increasing need for broad surveillance and control measures to track changes and pathways of antimicrobial resistance of C. jejuni in epidemiologically distinct populations

    MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania

    Get PDF
    Background Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. Methods The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database (http://pubmlst.org/campylobacter). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Results Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database (http://pubmlst.org/campylobacter). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson’s index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Conclusion Our results suggest that broiler products are the most important source of human campylobacteriosis in Lithuania. The study provides information on MLST type distribution and genetic relatedness of C. jejuni strains from humans, broiler products and dairy cattle in Lithuania for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country

    Prevalence of Genetic Determinants and Phenotypic Resistance to Ciprofloxacin in Campylobacter jejuni from Lithuania

    Get PDF
    Recently, the number of reports on isolation of ciprofloxacin resistant Campylobacter jejuni has increased worldwide. The aim of this study was to determine the prevalence of resistance to ciprofloxacin and its genetic determinants among C. jejuni isolated from humans (n = 100), poultry products (n = 96) and wild birds (n = 96) in Lithuania. 91.4% of the C. jejuni isolates were phenotypically resistant to ciprofloxacin. DNA sequence analyses of the gyrA gene from 292 isolates revealed that a change in amino acid sequence, Thr86Ile, was the main substition conferring resistance to ciprofloxacin. This change was significantly associated with isolates from poultry products (P &lt; 0.05) and humans (P &lt; 0.05). A total of 26.7% of C. jejuni isolates from human (n = 47), poultry products (n = 30) and wild bird (n = 1), had a mutation from Ser at position 22, and six had an additional mutation from Ala at position 39. Eight isolates from poultry and two isolates from human, corresponding to 67.0% of isolates with MICs ≥128 μg/ml, showed missense mutations Thr86Ile (ACA → ATA) and Ser22Gly (AGT → GGT) together, whereas isolates without these mutations showed lower MIC values (from 4 to 64 μg/ml). Two hundred forty-five C. jejuni isolates showed one or more silent mutations, and 32.4% of examined isolates possessed six silent mutations. In addition to the ciprofloxacin resistant isolates harboring only Thr86Ile point mutation (110 isolates), the current study identified resistant isolates (n = 101) harboring additional point mutations (Ser22Gly, Ala39Ser, Arg48Lys, Thr85Ala Ala122Ser, Glu136Asp, Vall49Ile), and strains (n = 57) having only Glu136Asp point mutation. The study highlight the potential public health problem with elevated ciprofloxacin resistance in Campylobacters from poultry meat, wild birds and humans, and the need for extensive surveillance enabling to follow changes of antimicrobial resistance development in this species
    corecore