31 research outputs found

    The genotypic and phenotypic spectrum of MTO1 deficiency.

    Get PDF
    BACKGROUND: Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). MATERIAL AND METHODS: Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. RESULTS: For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. CONCLUSION: MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists

    Exome sequencing and the management of neurometabolic disorders

    Full text link
    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)

    NANS-CDG: Delineation of the Genetic, Biochemical, and Clinical Spectrum.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadBackground: NANS-CDG is a recently described congenital disorder of glycosylation caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological processes such as brain and skeletal development. Here, we present an observational cohort study to delineate the genetic, biochemical, and clinical phenotype and assess possible correlations. Methods: Medical and laboratory records were reviewed with retrospective extraction and analysis of genetic, biochemical, and clinical data (2016-2020). Results: Nine NANS-CDG patients (nine families, six countries) referred to the Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%), facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9; 89%). Newly identified features include ophthalmological abnormalities (n = 6/9; 67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%), thrombocytopenia (n = 5/9; 56%), and hypo-low-density lipoprotein cholesterol (n = 4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc) is pathognomonic, the concentrations of which show a significant correlation with clinical severity. Genotypically, eight novel NANS variants were identified. Three severely affected patients harbored identical compound heterozygous pathogenic variants, one of whom was initiated on experimental prenatal and postnatal treatment with oral sialic acid. This patient showed markedly better psychomotor development than the other two genotypically identical males. Conclusions: ManNAc screening should be considered in all patients with IDD, short stature with short limbs, facial dysmorphisms, neurologic impairment, and an abnormal septum pellucidum +/- congenital and neurodegenerative lesions on brain imaging, to establish a precise diagnosis and contribute to prognostication. Personalized management includes accurate genetic counseling and access to proper supports and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as well as rehabilitation services for cognitive and physical impairments. Motivated by the short-term positive effects of experimental treatment with oral sialic, we have initiated this intervention with protocolized follow-up of neurologic, systemic, and growth outcomes in four patients. Research is ongoing to unravel pathophysiology and identify novel therapeutic targets.European Reference Network for Rare Neurological Disease

    Diagnostic Yield and Treatment Impact of Targeted Exome Sequencing in Early-Onset Epilepsy

    Get PDF
    Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged 8,344perpatientintheRetrospectivegroup,suggestingsavingsof8,344 per patient in the Retrospective group, suggesting savings of 5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important

    Exome Sequencing and the Management of Neurometabolic Disorders

    Get PDF
    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)

    Hyperleucinosis during infections in maple syrup urine disease post liver transplantation

    No full text
    Maple syrup urine disease (MSUD) is due to biallelic variants in one of the three genes: BCKDHA, BCKDHB, and DBT. Branched-chain alpha-ketoacid dehydrogenase complex deficiency and elevated leucine, valine, isoleucine and alloisoleucine in body fluids are the results. We report hyperleucinosis during intercurrent illnesses in six patients with MSUD post liver transplantation. Patient charts were retrospectively reviewed. Data was entered into an Excel Database. Literature was reviewed. Six patients with MSUD were included who had post liver transplantation hyperleucinosis during an intercurrent illness. Five had encephalopathy. One received hemodialysis for the management of hyperleucinosis. All patients had unrestricted diet. Additionally, there were five patients (one patient included into the current study) reported in the literature. We suggested management considerations for the follow-up of patients with MSUD post liver transplantation after the first episode of unexplained encephalopathy or signs of acute hyperleucinosis during intercurrent illness due to our clinical experience: 1) Healthy: Unrestricted diet and monitoring of leucine levels; 2) Illness: a) home illness management: increased carbohydrate intake b) illness management at hospital: intravenous dextrose, intravenous lipid and daily plasma amino acid monitoring. We report hyperleucinosis and/or encephalopathy as a rare event post liver transplantation in MSUD as a multicenter case series. Hyperleucinosis and/or encephalopathy may occur in both related and unrelated donor liver transplantation. Based on the long-term follow-up of those patients, these suggested management considerations may be revised as per the patients\u27 needs

    Use of dexamethasone in acute rhabdomyolysis in LPIN1 deficiency

    No full text
    Introduction: LPIN1 deficiency is an autosomal recessive form of early childhood recurrent severe rhabdomyolysis. Although not completely lucid yet, LPIN1 has been shown to modulate endosomal-related pro-inflammatory responses via peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α (PGC-1α). Treatment with anti-inflammatory agents such as dexamethasone has been proposed to improve the outcome. Case: We report a male toddler with recurrent episodes of complicated rhabdomyolysis, requiring prolonged intensive care unit admissions. Whole exome sequencing revealed a common homozygous 1.7 kb intragenic deletion in LPIN1. Despite optimal metabolic cares, the patient presented with an extremely high CK level where he benefited from intravenous dexamethasone (0.6 mg/Kg/day) for a period of 6 days. Results: Dexamethasone administration shortened the course of active rhabdomyolysis, intensive care admission and rehabilitation. It also prevented rhabdomyolysis-related complications such as kidney injury and compartment syndrome. Conclusion: Our patient showed a favorable response to parenteral dexamethasone, in addition to hyperhydration with IV fluids, sufficient calorie intake, and restricted dietary fat. The improvement with corticosteroids suggests an uncontrolled inflammatory response as the pathophysiology of LPIN1 deficiency

    Expansion of the QARS deficiency phenotype with report of a family with isolated supratentorial brain abnormalities

    No full text
    We describe a family with QARS deficiency due to compound heterozygous QARS mutations, including c.1387G > A (p.R463*) in the catalytic core domain and c.2226C > G (p.Q742H) in the anticodon domain, both previously unreported and predicted damaging. The phenotype of the male index further confirms this specific aminoacyl-transfer RNA (tRNA) synthetase disorder as a novel genetic cause of progressive microcephaly with diffuse cerebral atrophy, severely deficient myelination, intractable seizures, and developmental arrest. However, in contrast to the two hitherto published families, the cerebellum and its myelination are not affected. An awareness that QARS mutations may cause isolated supratentorial changes is crucial for properly directing genetic analysi
    corecore