5 research outputs found
Single Source Precursor for PAD-LaMnO3 Thin Films
A new lanthanum and manganese ethylenediaminetetraacetate (EDTA) coordination polymer (EDTA4− = [(CH2N)2(CH2-COOH)(CH2COO)4]) was synthesized from La(NO3)3 and Mn(NO3)2 reagents, ethylenediaminetetraacetic acid, and water at room temperature. The structure of the new compound formed, [{La2Mn3(EDTA)3(H2O)11}·12H2O]n, was determined by the single crystal X-ray diffraction technique. The synthesis and characterization of the La(III) and Mn(II) coordination complex, characterized by FTIR spectroscopy, thermogravimetry, and differential thermal analysis of the complex, are envisaged. X-ray crystal structure determination indicates that seven- and four-coordinate modes between La(III)/Mn(Π) and H4EDTA exist. [{La2Mn3(EDTA)3(H2O)11}·12H2O]n crystallizes in the monoclinic space group C2 with unit cell parameters of a = 16.1227(17) Å, b = 14.8049(16) Å, c = 14.8736(16) Å, and β = 116.107(2)°. Using this precursor, LaMnO3 (LMO) epitaxial thin films were grown by the polymer-assisted deposition (PAD) method on (100)SrTiO3 (STO) single crystalline substrates at a temperature of 900 °C. The LMO crystallized films exhibit a (001)LMO/(001)STO out-of-plane epitaxial relationship and a smooth surface morphology
Development of a Fluorine-Free Polymer-Assisted-Deposition Route for YBa2Cu3O7−x Superconducting Films
Polymer assisted deposition (PAD) was used as an environmentally friendly, non-fluorine, growth method for superconducting YBa2Cu3O7−x (YBCO) films. The kinetics of the thermal decomposition of the precursor powder was studied by thermogravimetry coupled with mass spectrometry (TG-QMS). YBCO films were spin coated on (100) SrTiO3 (STO) single crystalline substrates, followed by a single step thermal treatment under wet and dry O2 and O2/N2 mixture. The as-obtained films were epitaxially grown having a [001]YBCO||[001]STO out-of-plane epitaxial relationship and exhibited good superconducting properties with Tc (R = 0) > 88 K, transition widths, ΔT ≈ 2 K and critical current densities as high as 2.3 MA/cm2 at 77 K and self magnetic field.This work was supported by MRI-UEFISCDI through PN-III-P1-1.1-TE-2016-2465-SuperMagSense contract No. 80/02.05.2018, project 21 PFE-2018 and contract No. 1991 Internal Competition CICDI-2017.Peer reviewe
Morphological and Structural Evolution of Chemically Deposited Epitaxially LaNiO3 Thin Films
We report the preparation and characterization of epitaxial LaNiO3 (LNO) thin films by chemical solution deposition method using lanthanum and nickel acetylacetonates as starting reagents dissolved in propionic acid. In order to obtain further information regarding the decomposition behavior of the film, the precursor solution was dried to obtain the precursor powder, which was investigated by thermal analyses and X-ray diffraction measurements (XRD). The LNO perovskite thin films were deposited by spin coating on SrTiO3(100) single crystal substrates. A detailed study with different crystallization temperatures (600–900 °C) at two different heating ramps (5 and 10 °C/min) was performed. Oriented LaNiO3 thin films with good out-of-plane textures were obtained with optimal surface morphologies
Single Source Precursor for PAD-LaMnO3 Thin Films
A new lanthanum and manganese ethylenediaminetetraacetate (EDTA) coordination polymer (EDTA4− = [(CH2N)2(CH2-COOH)(CH2COO)4]) was synthesized from La(NO3)3 and Mn(NO3)2 reagents, ethylenediaminetetraacetic acid, and water at room temperature. The structure of the new compound formed, [{La2Mn3(EDTA)3(H2O)11}·12H2O]n, was determined by the single crystal X-ray diffraction technique. The synthesis and characterization of the La(III) and Mn(II) coordination complex, characterized by FTIR spectroscopy, thermogravimetry, and differential thermal analysis of the complex, are envisaged. X-ray crystal structure determination indicates that seven- and four-coordinate modes between La(III)/Mn(Π) and H4EDTA exist. [{La2Mn3(EDTA)3(H2O)11}·12H2O]n crystallizes in the monoclinic space group C2 with unit cell parameters of a = 16.1227(17) Å, b = 14.8049(16) Å, c = 14.8736(16) Å, and β = 116.107(2)°. Using this precursor, LaMnO3 (LMO) epitaxial thin films were grown by the polymer-assisted deposition (PAD) method on (100)SrTiO3 (STO) single crystalline substrates at a temperature of 900 °C. The LMO crystallized films exhibit a (001)LMO/(001)STO out-of-plane epitaxial relationship and a smooth surface morphology
Investigation of diethanolamine (DEA) as a chelating agent in the fabrication of fluorine-free propionate route YBa2Cu3O7 (YBCO) thin films
The role of diethanolamine (DEA) as a chelating agent was investigated in a fluorine-free precursor solution for the growth of superconducting YBa2Cu3O7 (YBCO) thin films via chemical solution deposition. Infrared spectroscopy and thermal analyses were employed to elucidate the interactions between the chelating agent and propionate-based coating solution. The physical properties of the as-obtained YBCO films were investigated to assess the effect of DEA addition on film growth. Special emphasis was placed on the determination of superconducting transport properties. These have been investigated in wide magnetic field (0-18 T) and temperature (4.5-77 K) ranges to account for various possible application scenarios. The 100 nm thick YBCO film deposited on a (001) SrTiO3 single-crystal substrate exhibited a critical current density of 4 MA cm-2 at 77 K in self-field.This work was carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom program 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. A D acknowledges the financial support of the 'Entrepreneurial skills and research excellence in doctoral and postdoctoral programs -ANTREDOC'—POCU/380/6/13/123927 project. M N and T P Jr acknowledge the financial support of a grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2021-1777, within PNCDI III.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe