4,211 research outputs found
Dirac quasinormal modes of two-dimensional charged Dilatonic Black Holes
We study charged fermionic perturbations in the background of two-dimensional
charged Dilatonic black holes, and we present the exact Dirac quasinormal
modes. Also, we study the stability of these black holes under charged
fermionic perturbations.Comment: version accepted for publication in EPJC. arXiv admin note:
substantial text overlap with arXiv:1404.5371, arXiv:1404.602
The complex networks of earth minerals and chemical elements
We study the large-scale organization of the mineral-mineral (MMN) and element-element (EEN) complex networks by analyzing their topological structures. We see that the MMN and EEN are homogeneous, display large cliquishness, small average path length and large average degrees. Most of these networks display uniform degree distribution with the exception of the weighted EEN, which display a power-law degree distribution with exponential tail. All these topological characteristics appear to be consequence of the evolutionary mechanisms giving place to the minerals on Earth mantle, which as a whole display a relatively uniform major element composition. We also study the correlations between some topological network parameters and the abundance of chemical elements in different scenarios. Good correlation is obtained between the weighted degree and the abundance of elements in Earth's crustal rocks
How the parts organize in the whole : a top-downview of molecular descriptors and properties for QSARand drug design
Sometimes the complexity of a system, or the properties derived from it, do depend neither on the individual characteristics of the components of the system nor on the nature of the physical forces that hold them together. In such cases the properties derived from the 'organization' of the system given by the connectivity of its elements can be determinant for explaining the structure of such systems. Here we explore the necessity of accounting for these structural characteristics in the molecular descriptors. We show that graph theory is the most appropriate mathematical theory to account for such molecular features. We review a method (TOPS-MODE) that is able to transform simple molecular descriptors, such as logP, polar surface area, molar refraction, charges, etc., into series of descriptors that account for the distribution of these characteristics (hydrophobicity, polarity, steric effects, etc) across the molecule. We explain the mathematical and physical principles of the TOPS-MODE method and develop three examples covering the description and interpretation of skin sensitisation of chemicals, chromosome aberration produced by organic molecules and drug binding to human serum albumin
The resonant damping of fast magnetohydrodynamic oscillations in a system of two coronal slabs
Observations of transversal coronal loop oscillations very often show the
excitation and damping of oscillations in groups of coronal loops rather than
in individual and isolated structures. We present results on the oscillatory
properties (periods, damping rates, and spatial distribution of perturbations)
for resonantly damped oscillations in a system of two inhomogeneous coronal
slabs and compare them to the properties found in single slab loop models. A
system of two identical coronal loops is modeled, in Cartesian geometry, as
being composed by two density enhancements. The linear magnetohydrodynamic
(MHD) wave equations for oblique propagation of waves are solved and the
damping of the different solutions, due to the transversal inhomogeneity of the
density profile, is computed. The physics of the obtained results is analyzed
by an examination of the perturbed physical variables. We find that, due to the
interaction between the loops, the normal modes of oscillation present in a
single slab split into symmetric and antisymmetric oscillations when a system
of two identical slabs is considered. The frequencies of these solutions may
differ from the single slab results when the distance between the loops is of
the order of a few slab widths. Oblique propagation of waves weakens this
interaction, since solutions become more confined to the edges of the slabs.
The damping is strong for surface-like oscillations, while sausage body-like
solutions are unaffected. For some solutions, and small slab separations, the
damping in a system of two loops differs substantially from the damping of a
single loop.Comment: 25 pages, 9 figure
Software tool for optimising indoor/outdoor coverage in a construction site
A system architecture, an empirical propagation model, and a software combined with a CAD tool, have been designed to offer mobile communication services to construction sites. Results have been validated by measurements.Peer ReviewedPostprint (published version
Indirect coupling between spins in semiconductor quantum dots
The optically induced indirect exchange interaction between spins in two
quantum dots is investigated theoretically. We present a microscopic
formulation of the interaction between the localized spin and the itinerant
carriers including the effects of correlation, using a set of canonical
transformations. Correlation effects are found to be of comparable magnitude as
the direct exchange. We give quantitative results for realistic quantum dot
geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure
- âŠ