585 research outputs found

    Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    Get PDF
    A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR) and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW) to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.). The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper

    Absence of weak antilocalization in ferromagnetic films

    Full text link
    We present magnetoresistance measurements performed on ultrathin films of amorphous Ni and Fe. In these films the Curie temperature drops to zero at small thickness, making it possible to study the effect of ferromagnetism on localization. We find that non-ferromagnetic films are characterized by positive magnetoresistance. This is interpreted as resulting from weak antilocalization due to strong Bychkov-Rashba spin orbit scattering. As the films become ferromagnetic the magnetoresistance changes sign and becomes negative. We analyze our data to identify the individual contributions of weak localization, weak antilocalization and anisotropic magnetoresistance and conclude that the magnetic order suppresses the influence of spin-orbit effects on localization phenomena in agreement with theoretical predictions.Comment: 6 pages, 6 figure

    Weak localization effects in granular metals

    Full text link
    The weak localization correction to the conductivity of a granular metal is calculated using the diagrammatic technique in the reciprocal grain lattice representation. The properties of this correction are very similar to that one in disordered metal, with the replacement of the electron mean free path ℓ\ell by the grain diameter dd and the dimensionless conductance gg by the tunnelling dimensionless conductance gTg_{T}. In particular, we demonstrate that at zero temperature no conducting phase can exist for dimensions D≤2D\leq 2. We also analyze the WL correction to magnetoconductivity in the weak field limit.Comment: 4 pages, 3 figures; minor corrections adde

    A semiclassical theory of the Anderson transition

    Full text link
    We study analytically the metal-insulator transition in a disordered conductor by combining the self-consistent theory of localization with the one parameter scaling theory. We provide explicit expressions of the critical exponents and the critical disorder as a function of the spatial dimensionality, dd. The critical exponent ν\nu controlling the divergence of the localization length at the transition is found to be ν=12+1d−2\nu = {1 \over 2}+ {1 \over {d-2}}. This result confirms that the upper critical dimension is infinity. Level statistics are investigated in detail. We show that the two level correlation function decays exponentially and the number variance is linear with a slope which is an increasing function of the spatial dimensionality.Comment: 4 pages, journal versio

    Hot electrons in low-dimensional phonon systems

    Full text link
    A simple bulk model of electron-phonon coupling in metals has been surprisingly successful in explaining experiments on metal films that actually involve surface- or other low-dimensional phonons. However, by an exact application of this standard model to a semi-infinite substrate with a free surface, making use of the actual vibrational modes of the substrate, we show that such agreement is fortuitous, and that the model actually predicts a low-temperature crossover from the familiar T^5 temperature dependence to a stronger T^6 log T scaling. Comparison with existing experiments suggests a widespread breakdown of the standard model of electron-phonon thermalization in metals

    Spin-orbit scattering in quantum diffusion of massive Dirac fermions

    Get PDF
    Effect of spin-orbit scattering on quantum diffusive transport of two-dimensional massive Dirac fermions is studied by the diagrammatic technique. The quantum diffusion of massive Dirac fermions can be viewed as a singlet Cooperon in the massless limit and a triplet Cooperon in the large-mass limit. The spin-orbit scattering behaves like random magnetic fields only to the triplet Cooperon, and suppresses the weak localization of Dirac fermions in the large-mass regime. This behavior suggests an experiment to detect the weak localization of bulk subbands in topological insulator thin films, in which a narrowing of the cusp of the negative magnetoconductivity is expected after doping heavy-element impurities. Finally, a detailed comparison between the conventional two-dimensional electrons and Dirac fermions is presented for impurities of orthogonal, symplectic, and unitary symmetries.Comment: 5 pages, 3 figures, 2 tables. To be submitted, comments are welcom

    GW approximations and vertex corrections on the Keldysh time-loop contour: application for model systems at equilibrium

    Get PDF
    We provide the formal extension of Hedin's GW equations for single-particle Green's functions with electron-electron interaction onto the Keldysh time-loop contour. We show an application of our formalism to the plasmon model of a core electron within the plasmon-pole approximation. We study in detail the diagrammatic perturbation expansion of the core-electron/plasmon coupling on the spectral functions of the so-called S-model which provides an exact solution, concentrating especially on the effects of self-consistency and vertex corrections on the GW self-energy. For the S-model, self-consistency is essential for GW-like calculations to obtain the full spectral information. The second- order exchange diagram (i.e. a vertex correction) is crucial to obtain a better spectral description of the plasmon peak and side-band peaks in comparison to GW-like calculations. However, the vertex corrections are well reproduced within a non-self-consistent calculation. We also consider conventional equilibrium GW calculations for the pure jellium model. We find that with no second-order vertex correction, we cannot obtain the full set of plasmon side-band peaks. Finally, we address the issues of formal connection for the Dyson equations of the time-ordered Green's function and the Keldysh Green's functions at equilibrium in the cases of zero and finite temperature.Comment: Published in PRB November 22 201

    Localization of Matter Waves in 2D-Disordered Optical Potentials

    Full text link
    We consider ultracold atoms in 2D-disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the non-interacting regime. We derive the diffusion constant as function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length.Comment: 4 pages, 3 figures, figures changed, references update

    Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles

    Get PDF
    We report Muon Spin Relaxation studies in weak transverse fields of the superconductivity in the metal cluster compound, Ga_84\_{84}[N(SiMe_3\_{3})_2\_{2}]_20\_{20}-Li_6\_{6}Br_2\_{2}(thf)_20⋅\_{20}\cdot 2toluene. The temperature and field dependence of the muon spin relaxation rate and Knight shift clearly evidence type II bulk superconductivity below T_c≈7.8T\_{\text{c}}\approx7.8 K, with B_c1≈0.06B\_{\text{c1}}\approx 0.06 T, B_c2≈0.26B\_{\text{c2}}\approx 0.26 T, κ∼2\kappa\sim 2 and weak flux pinning. The data are well described by the s-wave BCS model with weak electron-phonon coupling in the clean limit. A qualitative explanation for the conduction mechanism in this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page
    • …
    corecore