14 research outputs found

    Surmounting the sign problem in non-relativistic calculations: a case study with mass-imbalanced fermions

    Get PDF
    The calculation of the ground state and thermodynamics of mass-imbalanced Fermi systems is a challenging many-body problem. Even in one spatial dimension, analytic solutions are limited to special configurations and numerical progress with standard Monte Carlo approaches is hindered by the sign problem. The focus of the present work is on the further development of methods to study imbalanced systems in a fully non-perturbative fashion. We report our calculations of the ground-state energy of mass-imbalanced fermions using two different approaches which are also very popular in the context of the theory of the strong interaction (Quantum Chromodynamics, QCD): (a) the hybrid Monte Carlo algorithm with imaginary mass imbalance, followed by an analytic continuation to the real axis; and (b) the Complex Langevin algorithm. We cover a range of on-site interaction strengths that includes strongly attractive as well as strongly repulsive cases which we verify with non-perturbative renormalization group methods and perturbation theory. Our findings indicate that, for strong repulsive couplings, the energy starts to flatten out, implying interesting consequences for short-range and high-frequency correlation functions. Overall, our results clearly indicate that the Complex Langevin approach is very versatile and works very well for imbalanced Fermi gases with both attractive and repulsive interactions.Comment: 11 pages, 5 figure

    Evolution from few- to many-body physics in one-dimensional Fermi systems: One- and two-body density matrices, and particle-partition entanglement

    Get PDF
    We study the evolution from few- to many-body physics of fermionic systems in one spatial dimension with attractive pairwise interactions. We determine the detailed form of the momentum distribution, the structure of the one-body density matrix, and the pairing properties encoded in the two-body density matrix. From the low- and high-momentum scaling behavior of the single-particle momentum distribution we estimate the speed of sound and Tan's contact, respectively. Both quantities are found to be in agreement with previous calculations. Based on our calculations of the one-body density matrices, we also present results for the particle-partition entanglement entropy, for which we find a logarithmic dependence on the total particle number.Comment: 14 pages, 9 figures, published versio

    Exploring Bosonic and Fermionic Link Models on (3+1)−(3+1)-d tubes

    Full text link
    Quantum link models (QLMs) have attracted a lot of attention in recent times as a generalization of Wilson's lattice gauge theories (LGT), and are particularly suitable for realization on quantum simulators and computers. These models are known to host new phases of matter and act as a bridge between particle and condensed matter physics. In this article, we study the Abelian U(1)U(1) lattice gauge theory in (3+1)(3+1)-d tubes using large-scale exact diagonalization (ED). We are then able to motivate the phase diagram of the model with finite size scaling techniques (FSS), and in particular propose the existence of a Coulomb phase. Furthermore, we introduce the first models involving fermionic quantum links, which generalize the gauge degrees of freedom to be of fermionic nature. We prove that while the spectra remain identical between the bosonic and the fermionic versions of the U(1)U(1)-symmetric quantum link models in (2+1)(2+1)-d, they are different in (3+1)(3+1)-d. We discuss the prospects of realizing the magnetic field interactions as correlated hopping in quantum simulator experiments.Comment: 19 pages, 15 figure

    A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D

    Full text link
    We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost.Comment: 22 + 4 page

    Ground state of the two-dimensional attractive Fermi gas: Essential properties from few to many body

    Get PDF
    We calculate the ground-state properties of unpolarized two-dimensional attractive fermions in the range from few to many particles. Using first-principles lattice Monte Carlo methods, we determine the ground-state energy, Tan's contact, momentum distribution, and single-particle correlation function. We investigate those properties for systems of N=4,8,...,40N=4,8,...,40 particles and for a wide range of attractive couplings. As the attractive coupling is increased, the thermodynamic limit is reached at progressively lower NN due to the dominance of the two-body sector. At large momenta kk, the momentum distribution displays the expected k−4k^{-4} behavior, but its onset shifts from k≃1.8kFk \simeq 1.8 k^{}_F at weak coupling towards higher kk at strong coupling.Comment: 7 pages, 4 figures, 3 table

    Magnetic impurity in a one-dimensional few-fermion system

    Full text link
    We present a numerical analysis of spin-12\frac{1}{2} fermions in a one-dimensional harmonic potential in the presence of a magnetic point-like impurity at the center of the trap. The model represents a few-body analogue of a magnetic impurity in the vicinity of an ss-wave superconductor. Already for a few particles we find a ground-state level crossing between sectors with different fermion parities. We interpret this crossing as a few-body precursor of a quantum phase transition, which occurs when the impurity `breaks' a Cooper pair. This picture is further corroborated by analyzing density-density correlations in momentum space. Finally, we discuss how the system may be realized with existing cold-atoms platforms.Comment: SciPost Submissio

    Complex Langevin and other approaches to the sign problem in quantum many-body physics

    Full text link
    We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, including the classic reweighting method, alternative Hubbard-Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples, and summarize open challenges and practical solutions for the complex case. Finally, we review the recent applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter, with an emphasis on the nonrelativistic case.Comment: 51 pages, 19 figures, review articl

    Exploring imbalanced Fermi gases with stochastic quantization

    Get PDF
    Strongly coupled quantum matter displays a rich phenomenology including phase transitions and often unexpected collective behavior. Remarkable advances in experiments with ultracold Fermi gases allow us to gain deep insight into these intriguing systems. Their theoretical description, however, is often challenging as exact analytic solutions are available only in a few special cases, and approximate techniques such as mean-field or perturbation theory are of limited use. Numerical treatment with Monte Carlo (MC) methods has led to profound success in this regard. Unfortunately, for many systems - and especially for asymmetric quantum gases - the infamous sign problem slows progress due to an exponentially scaling of the computational effort with inceasing system size. In this thesis, we set out to explore the rich physics of two-component Fermi gases in the presence of finite spin polarization and/or mass imbalance. To surmount an arising sign problem, we learn from methodological advances made in the field of quantum chromodynamics and further develop these lattice approaches in the context of nonrelativistic Fermi gases. An extensive overview of the numerical methods is presented, including several toy problems to detail the capabilities and shortcomings of the developed approaches. With these tools in hand, we perform extensive benchmarks of the hybrid Monte Carlo method with imaginary asymmetries (iHMC) and the complex Langevin (CL) method, which is based on a complex version of stochastic quantization. Both approaches are shown to yield excellent results for the ground-state energy equation of state of mass-imbalanced Fermi gases in one spatial dimension. Due to its great versatility, the CL method is subsequently employed to study pairing in one-dimensional Fermi gases, for which suitable two-body correlations are computed, revealing unexpected pairing patterns for spin- and mass-imbalanced systems. Another major system of interest in this thesis is the paradigmatic unitary Fermi gas which is investigated at finite temperature and spin polarization. A precise determination of the density equation of state in the normal phase enables us to explore a broad range of thermodynamic properties. We infer valuable information on the finite-temperature phase diagram, such as a flat phase boundary of the normal-to-superfluid transition near the balanced limit and indications for the absence of an extensive pseudogap phase above this transition. The presented results provide experimentally testable ab initio predictions for a range of previously inaccessible thermodynamic quantities
    corecore