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Abstract

Strongly coupled quantum matter displays a rich phenomenology including phase transitions and
often unexpected collective behavior. Remarkable advances in experiments with ultracold Fermi
gases allow us to gain deep insight into these intriguing systems. Their theoretical description,
however, is often challenging as exact analytic solutions are available only in a few special
cases, and approximate techniques such as mean-field or perturbation theory are of limited use.
Numerical treatment with Monte Carlo (MC) methods has led to profound success in this regard.
Unfortunately, for many systems - and especially for asymmetric quantum gases - the infamous
sign problem slows progress due to an exponentially scaling of the computational effort with
inceasing system size.

In this thesis, we set out to explore the rich physics of two-component Fermi gases in the presence
of finite spin polarization and/or mass imbalance. To surmount an arising sign problem, we learn
from methodological advances made in the field of quantum chromodynamics and further develop
these lattice approaches in the context of nonrelativistic Fermi gases. An extensive overview of
the numerical methods is presented, including several toy problems to detail the capabilities and
shortcomings of the developed approaches.

With these tools in hand, we perform extensive benchmarks of the hybrid Monte Carlo method
with imaginary asymmetries (iIHMC) and the complex Langevin (CL) method, which is based
on a complex version of stochastic quantization. Both approaches are shown to yield excellent
results for the ground-state energy equation of state of mass-imbalanced Fermi gases in one
spatial dimension. Due to its great versatility, the CL method is subsequently employed to study
pairing in one-dimensional Fermi gases, for which suitable two-body correlations are computed,
revealing unexpected pairing patterns for spin- and mass-imbalanced systems.

Another major system of interest in this thesis is the paradigmatic unitary Fermi gas which is
investigated at finite temperature and spin polarization. A precise determination of the density
equation of state in the normal phase enables us to explore a broad range of thermodynamic
properties. We infer valuable information on the finite-temperature phase diagram, such as a flat
phase boundary of the normal-to-superfluid transition near the balanced limit and indications for
the absence of an extensive pseudogap phase above this transition. The presented results provide
experimentally testable ab initio predictions for a range of previously inaccessible thermodynamic
quantities.






Kurzfassung

Stark wechselwirkende Quantenmaterie besitzt eine facettenreiche Phdnomenologie, welche unter
anderem Phaseniibergidnge und kollektives Verhalten umfasst. Experimente mit ultrakalten
Fermigasen erlauben tiefe Einblicke in diese spannenden Systeme. Thre theoretische Beschreibung
ist jedoch schwierig, da es nur in einigen Spezialfillen moglich ist analytische Lésungen zu
erhalten und Néaherungsverfahren, wie zum Beispiel die sogenannte Molekularfeldndherung oder
die Stérungsrechnung, oft nur bedingt hilfreich sind. Numerische Rechnungen mittels Monte-Carlo
Methoden haben dagegen zu groflien Erfolgen gefithrt. Im Fall von asymmetrischen Quanten-
gasen werden diese jedoch durch das sogenannte Vorzeichenproblem erschwert, welches einen
exponetiellen Anstieg der notwendigen Ressourcen mit wachsenden Systemgrofien verursacht.
Die vorliegende Dissertation behandelt die vielfaltige Physik von zweikomponentigen Fermigasen
mit Spin- und/oder Massenpolarisierung. Um das Vorzeichenproblem zu umgehen werden me-
thodische Fortschritte im Bereich der Quantenchromodynamik genutzt und die dort gdngigen
Gittermethoden auf nichtrelativistische Fermigase erweitert. Die Diskussion beinhaltet einen aus-
fithrlichen Uberblick iiber die entwickelten numerischen Methoden, deren Stirken und Schwéichen
mitunter anhand von verschiedenen simplen Testféllen diskutiert werden.

Anschliefend werden umfangreiche Benchmark-Tests der sogenannten Hybrid-Monte-Carlo-
Methode mit imagindren Massen und der Complex-Langevin-Methode durchgefiihrt, wobei
letztere auf einer komplexen Version der stochastischen Quantisierung beruht. Es zeigt sich,
dass beide Algorithmen hervorragende Resultate fiir die Zustandsgleichung der Grundzustands-
energie eindimensionaler Fermigase mit asymmetrischen Massen liefern. Dariiberhinaus wird
die Complex-Langevin-Methode dazu verwendet die Paarbildung in eindimensionalen Fermi-
gasen mit unterschiedlichen Spinbesetzungen zu untersuchen. Hierfiir werden entsprechende
Zweiteilchen-Korrelationsfunktionen berechnet, welche ein unerwartetes Paarungsmuster zum
Vorschein bringen.

SchlieBlich wird das unitiare Fermigas bei endlicher Temperatur und Spinpolarisierung behandelt.
Ausgehend von einer préazisen Bestimmung der Dichte-Zustandsgleichung in der normalen Phase,
wird eine Vielzahl an thermodynamischen Gréflen berechnet. Daraus kann wertvolle Information
iiber das Phasendiagramm bei endlicher Temperatur abgeleitet werden, wie zum Beispiel eine
flache Phasengrenze, welche den normalen in den suprafluiden Zustand trennt, in der Néhe des
Spin-symmetrischen Gases sowie die Abwesenheit einer ausgedehnten Pseudogap-Phase iiberhalb
dieses Phaseniibergangs. Die présentierten Resultate liefern experimentell verifizierbare ab initio
Vorhersagen fiir eine Reihe von bis dato unzugénglicher thermodynamischen Gréfien.
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1 Introduction

“It’s gonna happen.”

My brother, way too often.

When we try to understand phenomena occurring in nature, we often observe a system influenced
by the interplay of a large number of constituents. A view on the exact underlying principles
might then be obstructed by the competition of several physical effects such that it may be hard
to tell the signal from the noise. The full theoretical understanding of all the mechanisms at
work requires a precise solution of the equations of motions under consideration of all microscopic
details. Within our most accurate description of nature at the moment, quantum mechanics,
this amounts to solving the quantum many-body problem. In this regard, already 90 years ago
Dirac famously remarked that “the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble” and that we should look for more practical
descriptions “which can lead to an explanation of the main features of complex atomic systems
without too much computation” [1]. This statement already hints at an extremely successful
strategy to cope with this complexity of nature, namely the construction of effective theories.
These contain just enough features to capture the physics of interest at a given scale, but cut out
subleading effects such that our understanding is not obscured by unimportant side effects.
Unfortunately, even these idealized models are not guaranteed to be easily solvable. Take for
instance the famous Hubbard model, which was proposed to describe the behavior of electrons
in the periodic potential of certain transition metals. The electronic orbitals are assumed to
be sufficiently localized near the lattice ions such that electrons reside in their close proximity.
The movement of the charge carriers through the crystal is described by electrons tunneling to
nearby orbitals and interaction only takes place if two electrons are present in the same orbital.
This is a tremendous idealization of the real world but nevertheless provides a good description
of many materials and is even thought to contain the physics of such exotic effects as high-T,
superconductivity. Despite the simplest possible structure, however, it is hopeless to solve this
model with pen and paper.

It is the strong correlation between the particles that prohibits the analytic treatment of the
above model and many others in essentially all areas of physics. While approximate approaches,
such as mean-field calculations, provide us with qualitative insights, a quantitative description
of these systems is only possible via sophisticated numerical treatment. Computationally, the
challenge to overcome is the exponential growth of the underlying Hilbert space. It implies that
straightforward diagonalization of the Hamiltonian in some basis is limited to a small number
of degrees of freedom beyond which even the most powerful supercomputers quickly meet their
limitations. To circumvent this unfavorable scaling, a large number of many-body methods have
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been developed over the years, each of which is suitable to treat a certain class of problems and
comes with its own strengths and weaknesses.

One of the most successful strategies to obtain reliable results is based on the stochastic evaluation
of the partition sum, referred to as Monte Carlo (MC) sampling. If applicable, such a treatment
only exhibits polynomial scaling with the number of degrees of freedom in the system, rather
than an exponential one. This drastic reduction of computational effort allows us to explore
large enough systems to accurately approximate nature and has helped to fundamentally shape
our understanding of physics of strongly correlated systems. In many cases, though, even these
powerful methods face a major roadblock, namely the notorious sign problem [2]. It clouds the
signal with an enormous amount of statistical noise such that the computational effort again
increases exponentially with the system size. This limitation, which especially slows progress in
systems containing fermions, is a major unresolved issue in theoretical physics and is the subject
of intensive investigation.

1.1 Cold atoms to the rescue

Instead of looking at a system exactly as nature provides it, we may just build a simpler model
in the lab to understand its key features. Loosely speaking, in theory “building a simpler model”
means neglecting or altering certain terms in the Hamiltonian. In an experimental context, on
the other hand, the procedure is much less clear. The solution was found in the preparation of
ultracold atomic gases, which enables us to systematically study the physics of strongly correlated
matter.

The central challenge in the preparation of these systems lies in reaching the quantum degenerate
regime in a controlled fashion. This is best achieved in gaseous matter cooled to low temperatures
to switch of thermal fluctuations. Below a certain point though, most substances liquefy or turn
solid, which stands in the way of a controlled study of quantum effects. The issue is prevented
by working at ultralow densities such that the scattering rates for three-body inelastic processes
are sufficiently suppressed and the gas exists in a long-lived metastable state. This requirement,
however, comes at the price of significantly reduced degeneracy temperatures: With typical
densities of the order of 104 /cm~3 the temperatures drop to the microkelvin regime. Reaching
these is far from trivial and was only achieved through remarkable experimental finesse and
progress based on techniques such as laser cooling and evaporative cooling.

This procedure, which to some extent follows Feynman’s proposal to simulate quantum theories
with actual quantum devices [3], allows to put long-standing theoretical predictions to a practical
test. Undoubtedly, the defining milestone for the field was achieved when the prediction of
Bose-Einstein condensation was confirmed by its observation in a cold gas of sodium atoms [4, 5].
This heralded the start of the now flourishing field of ultracold atom physics which led to an
enormous amount of physical insights into quantum many-body systems.

From a theorist’s perspective, these experimental advances allow us to play a sort of “quantum

lego” with pieces of Hamiltonians that may actually be realized in experiment. The topic of this
1
2
Fermi gases. These have been the center of numerous experimental efforts, where the two spin

thesis is inspired by the virtually endless possibilities and explores the rich physics of spin-

states are typically realized as two different hyperfine states of some fermionic atom species.
Early Fermi gases have been realized with the alkali metals 6Li or “°K because of their favorable
scattering properties [6]. Although these atom species are still the predominant choice, more
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exotic fermion species such as *>Cr, 87Sr, 161Dy, '67Er and "1 Yb are being brought to degeneracy
these days.

The present work focuses on systems with different amounts of spin-up and -down particles
and/or different masses of the two species. The tuning of these properties allows for a detailed
study of so-called imbalanced Fermi mixtures which are expected to exhibit fundamentally altered
pairing behavior and novel phases of matter. Theoretically, their study via stochastic numerical
methods is hindered by the sign problem which calls for the development of suitable numerical
techniques. This dissertation builds on several existing numerical approaches, originally employed
in high-energy physics, and extends them to the realm of ultracold Fermi gases. These new tools
prove to be a valuable resource in this context and are able to deliver results from first principles
in previously inaccessible physical regimes.

1.2 Engineering the interaction: the BCS-BEC crossover

As a consequence of the low density and temperatures in these dilute vapors, scattering between
the particles predominantly happens in the s-wave channel. This is due to the fact that the
colliding particles have a thermal wavelength larger than the range of the interatomic potential
and therefore are unable to resolve its exact shape. Consequently, the van-der-Waals potential
may be safely approximated with a contact potential

V(z,59) = g6z — ) (1.2.1)

with the strength set by the bare coupling constant g. Since the Pauli principle forbids two
fermions of the same spin to be present at the same position, interaction only happens between
up and down particles but not between alike spins.

1.2.1 Two types of pairing

For attractive interactions, which corresponds to negative values of g in Eq. (1.2.1), spin-up and
-down particles tend to form pairs. The exact nature of this process is dimension-dependent:
While the two-body Schrodinger equation has a bound-state solution for infinitesimally small
couplings in one and two spatial dimensions, the three-dimensional potential has to surpass a
certain threshold in order to support two-body pairing. Far above that threshold, the up and
down particles therefore clump together to form a molecule which will be a tightly bound state,
effectively acting as a composite boson. Consequently, a gas of spin-up and -down fermions in
this regime behaves like a weakly repulsive gas of composite bosons which, at low temperatures,
populate the lowest energy state, i.e., forms a Bose-Einstein condensate (BEC).! Hence, the
regime is referred to as BEC limit.

Below the bound-state threshold, the situation is slightly more delicate. Although pairing is not
supported on the two-body level, the situation drastically changes in the presence of many weakly
interacting fermions at low temperatures. Specifically, it was shown that in the presence of a
Fermi surface the existence of a shallow two-body bound state is favored even for infinitesimal
attraction [7]. The pairs are protected by a gap in the single-particle energy spectrum such

I The effective Hamiltonian for the bosonic system can only be bounded from below if the interaction is repulsive.
For attractive interaction it is impossible to form a stable gas and the system collapses.
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Figure 1.1:  Sketch of a Feshbach resonance. (Left) Interatomic potential as a function of
separation 7 of the closed and open channels. The gray solid line represents the energy of the
bound state in the closed channel. (Right) Scattering length as a function of the magnetic
field. The resonance occurs at the vertical dashed blue line and the gray point reflects the
noninteracting point.

that the ground state is stable against fluctuations. Opposed to the strong interaction case, this
type of pairing is localized in momentum space which implies that the size of such a 1|-pair is
much larger than the average particle spacing. The mechanism was in fact introduced in order
to explain the behavior of electrons in superconductors, which are subject to a slight attractive
interaction through Coloumb screening and phonon exchange [8]. These large pairs are nothing
but the well-known Cooper pairs and the regime is consequently called Bardeen-Cooper-Schrieffer
(BCS) limit.

Thus, there are two seemingly different worlds on the two ends of the possible interaction
strengths: Tight two-body paring on the strongly attractive BEC end and many-body pairing in
the weakly attractive BCS regime. Naturally, theorists asked the question what would happen if
the scattering properties would be changed continuously to interpolate between these limits [9-11].
Indeed, it was found that the above limits are two sides of the same coin which are connected
through a smooth evolution from the BCS side to the BEC limit, referred to as the BCS-BEC
crossover [12, 13].

1.2.2 Feshbach resonances

One of the most striking features of ultracold atoms experiments is that these theoretical
considerations can actually be probed through the ability to tune the interaction between the
particles. Opposed to the situation in, e.g., nuclear physics, where the potential between the
nucleons is complicated and we have to live with whatever nature gives us, this ability allows
us to systematically study the influence of the coupling on the behavior of the particles. This
is achieved via the usage of so-called magnetic Feshbach resonances, allowing us to tune the
interaction via an external magnetic field [14-16].

The mechanism is best understood by considering a two-channel model as sketched in the left
panel of Fig. 1.1. A channel merely describes the particle configuration and is denoted as
(A, B). For two-body collisions in spin—% systems, possible channels include (1,7) or (1,{) which
correspond to different hyperfine levels, as remarked above. At large interatomic distance r, the
interaction potential is negligible and the total energy of the state is given by the sum of the
single-particle energies £ = E, + Ey. If E of the incoming particle configuration is below the
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energy E’ of some other channel (at large separation), the latter is said to be closed since energy
conservation forbids it as the final scattering state. Conversely, energetically allowed channels
are said to be open.

The particles in the model with one open and one closed channel scatter elastically, which means
the scattering process will not change the particle configuration. While momentum transfer still
takes place, the scattering is then of the form (A, B) — (A, B). Since the two potentials are
coupled via the hyperfine interaction, however, the presence of the closed channel can have a
dramatic impact on the scattering cross-section. This is the case if a bound state with binding
energy ep is supported in the closed but not in the open channel. If the energy of the incoming
particles is in the vicinity of the bound-state energy, a resonance occurs, where the particles
could briefly flip the hyperfine state, form a virtual bound state (which may be achieved within
the energy uncertainty), and then again separate to conserve the energy at large separations.
The strength of this phenomenon is governed by the energy difference ez — E, which in turn
depends on the external magnetic field B, because the different hyperfine levels react differently
to the external field. By changing B, the scattering properties may therefore be altered which is
described via the relation

a(B) = ang (1 - BOA_B> , (1.2.2)

where agg denotes the background scattering length, B, the position of the resonance and A is
a shape parameter. The qualitative dependence is shown in the right panel of Fig. 1.1. Although,
the scenario is more complicated in real atomic systems the physics is captured by these simple
considerations. For more details it is referred to the extensive review [17] and to [18] for an
educational example.

For the low-energy processes relevant in cold Fermi gases, the s-wave scattering length fully
characterizes the bare coupling between the particles such that the interaction essentially can
be tuned at will.2 Large negative values of a correspond to the BCS limit and large positive
values to the molecular BEC regime. This remarkable possibility has been exploited in several
cold atoms experiments and the BCS-BEC crossover was beautifully confirmed in a series of
experiments (see [12, 13, 20] for reviews).

1.2.3 The unitary regime

Right “in the middle” of the crossover, i.e., at the resonance, is a special point of interest which
corresponds to the threshold of two-body bound-state formation. The scattering cross section in
this regime is at the maximum allowed by the unitary property of the scattering matrix and it
is therefore referred to as the unitary regime. In this region, the scattering length dominates
all other length scales in the system. For dilute gases, where the interparticle distance n=1/3 is
much larger than the effective interaction range r,, this implies a separation of scales:

a>>n"3 >, (1.2.3)

2The exact relation can, e.g., be obtained via solving the Lippmann-Schwinger equation and is generally
dependent on the spatial dimension (see, e.g, [19]).



6 CHAPTER1 — INTRODUCTION

At this point, a effectively drops out of all physical quantities as it is much larger than all other
length scales in the system. Hence, all information on the shape of the interaction potential is
lost and the density, along with the temperature, is the only dimensionful scale left to determine
the physics. As a consequence, the scattering and thermodynamic properties of the unitary Fermi
gas (UFG) are universal and valid for all other systems with sufficiently short-ranged interaction
potentials and large scattering length.

The universal nature of the UFG reaches far beyond cold quantum gases and renders the system
relevant for such disparate energy scales as those of atomic and astrophysics and has, moreover,
been shown to reflect a nonrelativistic type of conformal invariance [21-24]. Interesting connections
exist to the inner crust of neutron stars, where dilute neutron matter exhibits a dominating
s-wave scattering length [13, 25-27]. Other examples include the nature of pairing above the
critical temperature for superfluidity, often termed the pseudogap regime [28], which might share
common features with the cuprates. Combined with the unusually high critical temperature
for superfluidity of the UFG, this suggests intriguing connections to high-T, superconductors.
Because of such relevance of the UFG for various fields, the past two decades have witnessed
uncounted studies exploring its unpolarized limit both theoretically and experimentally [20].

From a theoretical perspective, the UFG is challenging to access due to the absence of a small
parameter which renders the regime intrinsically nonperturbative. While the case of balanced
spin-up and -down populations may be treated with conventional MC approaches, the situation
changes drastically for the imbalanced scenario which will be discussed in the following. A goal
of this thesis is to arrive at a quantitative treatment of this regime based on stochastic methods
beyond the fermionic sign problem.

1.3 Imbalanced Fermi gases

A natural question to ask is what happens if not every up particle has a down partner, i.e., what
happens in the presence of finite spin polarization? In this case, the Fermi surfaces of the species
differ and BCS-type pairing will be “disturbed” in some way. The spin imbalance is quantified
by the relative polarization

p=i= N _ M (1.3.1)

N.+N N

where N_ denotes the number of particles in the spin state o. In the balanced limit at p = 0,
the gas is well known to be a superfluid at sufficiently low temperatures [12]. At p = 1, on the
other hand, only up particles are present which corresponds to a noninteracting system due to
the Pauli exclusion principle. Since pair formation is impossible in this case, no superfluidity is
suppressed and the system will be in the normal phase. Regardless of the interaction strength,
this implies the existence of at least one phase transition at some critical polarization p., above
which the excess fermions destroy the superfluid behavior.
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Figure 1.2: Sketch of the density of states in three spatial dimensions for spin-up (red) and down
(blue) particles. From left to right: balanced system, spin imbalance, mass imbalance.

1.3.1 Chandrasekhar-Clogston limit

To better understand the physics associated with the critical polarization, the finite spin asymme-
try may be viewed as the consequence of an effective magnetic field.® It couples to the magnetic
moment of the spins and causes an energy contribution depending on its orientation such that
spins gain free energy by aligning. This tendency competes with the pair formation in the
superfluid phase, which yields an energy gain of A per particle. If the Zeemann energy h = ugB
for flipping the spin of a particle is larger than the gap, superfluidity is destroyed because the
normal phase has a lower free energy.

The actual limit, however, is even lower than this naive estimate due to a shift of the Fermi
surfaces in the normal phase. This is depicted in the central panel of Fig. 1.2, where the density
of states (DOS) for both spin species of a noninteracting gas is shown. The DOS quantifies
the number of states per volume and energy interval as a function of the energy € and in three
dimensions is given by

mazﬁg@m%@ (1.3.2)

At zero temperature, the total number of atoms for a given spin species is obtained by integrat-
ing p(e) up to the associated Fermi energy p,. Evidently, the separation of Fermi surfaces leads
to a different number of spin-up and -down particles in the gas, which is proportional to the
shaded areas under the respective curves.

The free energy for two unequal Fermi surfaces is given by

22 Hy
Ex(ps 1) =/ deep(e) +/ deep(e) — Ny — py N, (1.3.3)
0 0

which may be rewritten as a function of the effective magnetic field through the substitution
Hepy = pEhe

5
2

Eﬂmm:_iﬂmml@+z>+<L{91. (1.3.4)

3Note that this “magnetic field” should only be understood as the origin of the Zeemann splitting of the energy
levels and has nothing to do with the Feshbach mechanism discussed above.
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An expansion in A yields
EN(M) h) = EN(:Ua 0) - Vp(:u)hz + O(h‘4)> (135)

which quantifies the energy gain by adjusting the Fermi surfaces in the presence of a magnetic
field. At the critical field strength h,, this energy gain must be equal to the free energy difference
between the normal and superfluid phases. At mean-field level, the latter is given by

By (,0) = By(yn) + 2220, (1.3.6)

where ‘5/ p()A is the number of pairs at the Fermi surface in the energy interval of the gap A.

Comparing this expression to Eq. (1.3.5) yields the critical field strength

A

h., = 7 (1.3.7)
This is known as the Chandrasekhar-Clogston (CC) or Pauli limit [29, 30]. For magnetic fields
above this value, the pairing gap is surmounted by flipping spins such that the normal state has
a lower free energy than the superfluid.*
The above expression is valid in the weakly attractive BCS regime. There, the gap is related to
the coupling via A ~ e~¢"5%-/9 guch that even a small magnetic field will destroy the superfluid.
Under the assumption that a similar mechanism is at work in the UFG, despite the strong
interaction, the superfluid is expected to be stable against some external magnetic disturbance
because of the large gap of A a~ 0.5¢p, where ¢ denotes the Fermi energy. Although this
comparison is qualitative at best, experimental studies in the strongly interacting regime indeed
found superfluidity in the presence of finite spin imbalance [31-36].
In the strongly interacting regime, a precise theoretical characterization of this transition beyond
this simple mean-field picture requires sophisticated many-body methods. Progress in this
regard was achieved based on functional methods [37, 38] or MC studies in the zero-temperature
limit [39]. A full characterization of the transition at arbitrary temperatures based on ab initio
methods, however, remains to be explored.

1.3.2 The Fermi polaron

At large imbalances, near the limit of full polarization, the gas may be envisioned to consist of a
single impurity moving in a sea of majority fermions. It turns out that this simple picture, called
the Fermi polaron, is a surprisingly good description of even strongly correlated Fermi gases in
the normal phase.

Along the BCS-BEC crossover, the impurity undergoes a change from an essentially free particle
at weak interaction to a strongly bound 71|-molecule in the presence of a majority background.
When the interaction is not strong enough to form a bound state, collisions limit the free
propagation of the impurity. This configuration may be described by a variational ansatz due to
Chevy [40] which introduces a single minority atom dressed by a cloud of particle-hole excitations.

4Note that the derivation of the CC limit neglects the existence of the Meissner effect such that a magnetic
field may enter the superfluid. This is only justified for neutral particles. For superconductivity, which necessarily
involves charged particles, the critical field is far below the CC limit due to the induced current to keep the
magnetic field from permeating the superconductor.
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Figure 1.3: Schematic pairing of spin-up and -down particles. Solid lines represent Fermi
surfaces (FS) and shaded areas indicate kinematically possible scattering states near the FS.
(Left) Balanced case, with scattering (%T%i) — (E,TJ‘?L)' (Center) Spin imbalanced case,
lq] = |%FT — kp 1|+ (Right) Minority F'S is shifted by g. The overlap of the shaded areas shows
favorable pairing states with finite center-mass-momentum g.

At polarizations below the single impurity limit, multiple Fermi polarons are present in the gas.
For low impurity densities, or equivalently, large spacing between the polarons, the impurities
form a weakly interacting gas of fermionic quasiparticles in a background of majority atoms.
Hence, the new degrees of freedom comprise a Fermi liquid with rescaled physical properties such
as an effective mass larger than the bare particle mass.

At unitarity, this mechanism has indeed been observed to describe experiments accurately not
only at large temperatures [41] but even at large polarizations in the ground state [42-44].
Furthermore, the picture is consistent with Diffusion Monte Carlo (DMC) simulations at 7' = 0
in the normal phase [39] where the quasiparticle properties are determined and has furthermore
been used to study various other quantities [45]. Increasing the minority density further leads to
an effective interaction between the quasiparticles, as the spacing between the Fermi polarons
reaches the size of the surrounding majority cloud. By adding an effective interaction term to a
variational ansatz, the quasiparticle picture may still be applied up to intermediate values of
minority concentrations [36, 46].

1.3.3 Polarized superfluids?

The nature of superfluidity in spin-imbalanced Fermi gases turns out to be a much more subtle
question. The original formulation of the BCS theory requires equal densities for both spin
species and it is unclear how exactly excess majority fermions would interfere with the formation
of a condensate. Possible scenarios include a total breakdown of superfluid behavior or a phase
separation into a balanced BCS-type superfluid region and an either fully or partially polarized
normal fluid [47]. Alternatively, exotic types of pairing could occur, featuring a coexistence
region where the superfluid exists despite the spin imbalance.

Several mechanisms have been proposed to accommodate a polarized superfluid, where not every
majority particle has a partner to form a pair. Proposals include the deformation of Fermi
surfaces [48], breached pairing inside the majority Fermi surface [49, 50] and p-wave pairing of
spin alike particles as a consequence of a mediated interaction through the minority species [51].
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A particularly interesting possibility is pairing at opposite, but incommensurate momenta, as
depicted in Fig. 1.3. This is similar in spirit to the BCS theory, but in this scenario the Cooper
pairs form at a finite center-of-mass momentum proportional to the mismatch of the Fermi
momenta

|q] o %F,T - %F,H- (1.3.8)

This is expected to have profound effects on the order parameter A(7), which is given by the
expectation value of the pairing field

A7) o< (P () (7)) (1.3.9)

While in standard BCS theory the order parameter is translationally invariant, i.e. A(7) = A, the
finite momentum of the Cooper pairs suggests a nontrivial spatial dependence. Two mechanisms
have been proposed to accommodate this behavior: The Fulde-Ferrell (FF) ansatz includes
a single mode with momentum ¢ such that the order parameter becomes A(7) = NS [52].
Alternatively, the Larkin-Ovchinnikov (LO) mechanism requires at least two modes at +q and
obtains A(7) = Acos(q - k) for the order parameter [53]. Both scenarios are similar and are
typically referred to as FFLO pairing.”

At zero temperature in the BCS regime, the critical field strength above which the FFLO phase
vanishes was found to be h, = 0.754A, which is slightly above the CC limit. Beyond the ground
state, it was suggested that such a state is stable, if at all, only at very low temperatures.
The state is expected to be particularly feeble in continuous systems and it has been argued
that lattice geometries are more likely to favor such an exotic pairing mechanism through a
better Fermi surface nesting. Additionally, reduced dimensionality could help to stabilize an
inhomogeneous pairing state. Regardless of the interaction strength and geometry, the phase has
so far eluded experimental measurements. This is in part a consequence of the necessity of a
trap which renders the chemical potential, and with it the phase structure, position dependent.
Recent advances regarding flat traps could improve this shortcoming [55]. A recent extensive
review on FFLO physics can be found in [54].

The full phase-diagram for the BCS-BEC crossover, including the possibility of polarized super-
fluids, was discussed qualitatively within an effective field theoretical approach in [56]. Several
mean-field studies have investigated the weakly-interacting regime (see [57-59] for reviews) and
functional methods have been used to study the phase diagram at unitarity [37, 38]. The exact
nature of the phase diagram, in particular at strong interaction, remains an open question.

1.3.4 Mass imbalance

A mismatch of Fermi surfaces may not only be induced via different chemical potentials but can
also be achieved via a mass asymmetry between the species. The latter enhances the number
of available energy states in a given interval, as depicted in the right panel of Fig. 1.2 for a
mass ratio of m/m, = 2. Populating two mass-imbalanced species up to the same energy level,
therefore, results in a finite spin-imbalance with similar consequences for the pairing as discussed

5The FFLO state is still associated with spontaneous breaking of the U(1) symmetry of the ground state. For
the FF state, an additional breaking of time-reversal symmetry occurs, whereas the LO state is associated with
breaking of translational invariance. See, e.g., [54] for further details.
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above. A difference to the mass-balanced case, however, is the reduced energy cost to excite the
heavier particles into a higher state, as the density of states is enhanced. The larger the mass
asymmetry, the more likely it is to excite the heavier species. Furthermore, the bound-state
energy of the two-body problem depends on the reduced mass, such that the onset of two-body
pairing, i.e., the unitary regime in three-dimensional systems, is shifted to larger bare couplings.
While theoretically the mass parameter may be tuned at will, only certain values are accessible
in experiment due to the limited number of fermionic atom species suitable for experiments. As
a further complication, not only the single-species scattering properties are relevant but also
so-called heteronuclear Feshbach resonances need to be present. Promising systems currently
probed in experiments include mixtures of 6Li*°K, 4°K'61Dy and Li®**Cr with mass-ratios of
K=m/ my = 6.67,4.02 and 8.83, respectively. While other mixtures are in principle possible,
their mass ratios are either too close to unity to observe a noticeable effect or above the threshold
of k ~ 13.6 beyond which three-body losses prevent long-lived experiments. An alternative to
different particle masses can be realized with optical lattices, where the hopping parameter may
be made spin-selective [60]. While this emulates a mass-imbalanced system, the procedure is
intrinsically limited to lattice geometries.

Generally, the theoretical study of mass-imbalanced systems in three spatial dimensions is
surprisingly scarce in the literature. Beyond mean-field considerations, which for instance suggest
a stabilized FFLO phase at large enough imbalances [61], renormalization group studies [62] and
MC calculations in the ground-state based on lattice approaches with imaginary asymmetries [63]
as well as DMC [64-66] seem to be the notable exceptions to the otherwise dire situation because
of the sign problem.

1.4 Reduced dimensionality

One way to address the challenging many-body problem, at least in theory, is to consider an at
least seemingly simpler version of it by reducing the spatial dimension. Indeed, in one dimension
(1D), several many-body models such as the Gaudin-Yang model [67, 68] and the Hubbard
model [69] may be solved exactly via the Bethe Ansatz (BA) [70, 71].

Besides providing a first test ground for numerical methods, as will be explored in the second part
of this thesis, the 1D world is in fact the stage of vastly different physics compared to our natural
three-dimensional (3D) habitat [72, 73]. This originates from the special influence of interactions
in 1D: when a particle moves along the line, it necessarily has to impact its neighbors since
there is nowhere else to go. Therefore, all movement in a 1D geometry is collective. This has
profound consequences and leads to the breakdown of Fermi liquid theory. Instead, the low-energy
properties of 1D systems are described by what is known as a Luttinger liquid [74, 75].6

As an example of the somewhat counterintuitive situation, let us consider the density of states

pIP)(g) = %\/Q?m. (1.4.1)

This is in contrast to the 3D version in Eq. (1.3.2), which grows with /. As a consequence, the

for a single fermion species:

ratio of the interaction energy to kinetic energy scales as oc n~! which implies that the system is
actually less interacting at higher densities. Loosely speaking, this may be compared to a traffic
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jam: The reduced dimensionality forbids the particles to move past each other such that at large
densities not much movement is possible at all.
These days, the simplified world of 1D is not only of theoretical interest as experiments with
ultracold atoms actually provide a way to prepare such setups [71]. One way to effectively reduce
the dimensionality is achieved via highly anisotropic trapping potentials which take the generic
form
m 2 2 2,2 2,2

Virap = 5 (w22? + wiy? + w?z?). (1.4.2)
By choosing the frequencies such that w, < w,,w, the trap is very steep in the transverse y-
and z-directions compared to the longitudinal xz-direction and the system effectively turns into a
1D tube. Through the large energy spacing of the harmonic oscillator levels in the transverse
directions, the particles will be in the lowest energy state (n,,n,) = (0,0) if the aspect ratio is
large enough. As the associated wavefunction is strongly peaked in the center of the transverse
directions, this effectively confines the movement of particles to the z-direction whereas the y and
z coordinates are “frozen” to the zero-point motion. Other options of preparing low-dimensional
quantum gases include optical lattices with strongly anisotropic hopping [76] and atom chips [77].

1.5 Outline

This thesis is structured in two main parts: a technical discussion of the many-body framework
and the presentation of numerical results for strongly interacting Fermi gases.

The first part introduces, the applied numerical approach in detail, starting from the Hamiltonian
and its treatment on the lattice. In Chapter 2, a suitable path-integral representation based
on an auxiliary-field decomposition, which is amenable to stochastic sampling, is developed.
Subsequently, elements of Monte Carlo simulations are presented in Chapter 3, with some
emphasis on the treatment of Markov chains. Chapter 4 constitutes the central piece of our
many-body discussion and contains an in-depth derivation of the two global update algorithms
applied in this work, namely the hybrid Monte Carlo and complex Langevin methods. The
former is based on the Metropolis algorithm and consequently suffers from a sign problem for
imbalanced systems. It is shown that the issue may be mitigated for mass-imbalanced systems
by introducing an imaginary asymmetry. The second approach is an extension of the concept of
stochastic quantization to complex fields which potentially allows us to circumvent unfavorable
scaling due to the sign problem. The possible shortcomings arising with such a treatment are
discussed in detail, along with practical remarks relevant for a stable implementation.

The second part builds on these advances and presents results for imbalanced Fermi gases. In
Chapter 5, a detailed study of one-dimensional Fermi gases is shown ranging from balanced
few-body systems to spin- and mass-imbalanced many-body systems. The numerical behavior of
the developed methods in the presence of imbalances is analyzed and results are compared to
benchmark data wherever available.

Finally, an extensive study of the thermodynamics of the spin-polarized UFG is presented in
Chapter 6. The investigation involves a treatment of numerical artifacts as well as an exhaustive
benchmark for the balanced UFG, for which numerous calculations exist in the literature. General
conclusions are presented in Chapter 7 along with an outlook regarding technical improvements
as well as interesting physical systems that could be attacked with the presented developments.
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Details of derivations in the main text are presented only where necessary and additional steps
are summarized in Apppendix A. Moreover, a practical overview on error estimation is given
in Apppendix B and useful relations for noninteracting Fermi gases, the virial expansion and
the derivation of some thermodynamic relations are summarized in the Appendices C to E,
respectively. Finally, a hands-on example introducing the Python package gMacs which was
developed as a part of this thesis, is presented in Apppendix F.
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Surmounting the sign problem in nonrelativistic calculations: A case study with mass-
imbalanced fermions

Lukas Rammelmiiller, William J. Porter, Joaquin E. Drut and Jens Braun

Published in Phys. Rev. D 96, 094506 (2017)

A complex Langevin approach to ultracold fermions
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Finite- Temperature Equation of State of Polarized Fermions at Unitarity
Lukas Rammelmiiller, Andrew C. Loheac, Joaquin E. Drut, and Jens Braun
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Complex Langevin and other approaches to the sign problem in quantum many-body
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Parts of the text which are taken from these articles are not marked explicitly but mainly

incorporated as follows: The discussion of the methodological framework in Sections 4.4 and 4.5

is based on the review article [82]. The discussion of balanced few-body systems in Section 5.2 is

in large parts taken from [78]. The subsequent presentation of mass-imbalanced 1D Fermi gases

in Section 5.3 originates from [79] and [80]. Finally, results and parts of the text of [81] have
been used in the discussion of the UFG in Chapter 6.



Part |

From statistical mechanics
to complex Langevin






2 Nonrelativistic fermions,
the lattice & auxiliary fields

“In this house we obey the laws of thermodynamics.”

Homer J. Simpson

Having introduced the phenomenology of the physics concerning this work, we now lay out
the framework which allows us to study strongly interacting Fermi gases. The goal of this
chapter is to arrive at a representation amenable to a numerical treatment, starting from the
Hamiltonian of our system of interest. Along the way, we introduce the field-theoretical tools
and subsequently present a lattice formulation of the problem. While the spatial lattice occurs
naturally in a condensed-matter setting, in this work we primarily consider it a mathematical tool
to represent the underlying field theory. This strategy was originally proposed by Wilson to study
the confinement problem in quantum chromodynamics (QCD) [83] and is at the heart of so-called
lattice gauge theories [84]. The tremendous success of lattice methods to address nonperturbative
effects in high-energy physics has motivated applications in the context of nonrelativistic systems
such as effective theories for nuclear physics [85] and ultracold quantum gases [86].

Another central part of our numerical methods are so-called auxiliary-field transformations,
which reduce two-body operators to one-body terms coupled to an auxiliary field. Eventually this
procedure leads to a path-integral representation of the partition sum, allowing us to numerically
investigate thermodynamics of our desired system. The main benefit of such an approach is its
versatility, as it can be formulated for a broad range of Hamiltonians. Moreover, these methods
may be employed not only at finite temperature but can be adapted to zero-temperature via a
projection to the ground state, as shown below.

2.1 From the Hamiltonian to the path integral

The system we consider in this work is the two-component Fermi gas with short-ranged interaction
between the species. From the discussion in the previous section it is evident that the interaction
may be modeled by a d-potential, such that the corresponding Hamiltonian in arbitrary dimension
d reads

Mg

i a {Z 3@ (— e 9?) @)+ 9 @N0] 000,000, } = By + B (20)
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Here, g is the bare interaction parameter related to the s-wave scattering length as discussed

1" The sum in the kinetic term runs over all species and the operators @,(5&) and

previously.
1, (Z) create and annihilate fermions of type o at position Z. These operators fulfill the standard

anticommutation rules

{P5(@),91,(@)

= {1, (%), 9, (')} =0, (2.1.2a)
{P4(2), 0y (@)} =0

i— 7). (2.1.2b)

From these relations it is obvious that the second term in Eq. (2.1.1) represents the d-potential.
From now on, the units are fixed to # = ¢ = kg = 1 along with a dimensionless mass-parameter,
leaving length-scales as our only unit of reference. Accordingly, energies and temperatures carry
the units of L=2 and momenta are given in L~'.

To study the thermodynamics, the central object of interest is the partition function which
generically is written as

Z(B) = Tr [e 9] | (2.1.3)

where 8 = %, For a noninteracting system, i.e. the ideal gas, the computation of this quantity
amounts to evaluating Gaussian integrals and can be done analytically. In the case of interacting
theories, however, the study of nonperturbative physics beyond the mean-field level poses a
formidable challenge and advanced concepts, such as the numerical methods developed in this
work, have to be employed.

The standard procedure to connect Eq. (2.1.3) to a field-theoretic description involves chopping
B into small slices AT = Nﬁ and inserting suitable factors of 1 in terms of fermionic coherent
states (see, e.g., [87]). After formally performing the limit Nz — co we arrive at the fermionic

path-integral
29) = [[1Dan] e Setv, (21.4)

where nT = (m4,m,) represents a Grassmann field for two spin species and the action is given by

B
&WMZ/xh/d%nWm+HmM) (2.1.5a)
0 Rd
B v2
= / dr/ ddx nt <8T— ) 0+ g, n, (2.1.5b)
0 Rd 2m

with a normal-ordered Hamiltonian H expressed with the Grassmann fields n and nf. The
integration over 7 must satisfy antiperiodic boundary conditions n(Z,0) = —n(&, ) which follows
from the Pauli principle. Through this procedure, the path integral in Eq. (2.1.4) naturally
arises in the Euclidean formulation, where we can interpret the inverse temperature 3 as the
imaginary-time axis of a d + 1 dimensional Fuclidean field theory.

The partition function holds all information, once we know it as a function of a given parameter.

INote that the exact relation between the scattering length and g as well as its dimension is highly dependent
on the spatial dimension. In two-dimensional problems, for instance, g is dimensionless leading to a scale anomaly
that does not occur in one- or three-dimensional systems.
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B —> AT 0

Figure 2.1: Visualization of the imaginary-time discretization. Single blocks represent the transfer
matrix T which can be viewed as the propagator for a single time step. Products of N blocks,
according to Eq. (2.2.1) represent imaginary-time evolutions from 6 to 6’ =6 + NAT.

To learn about specific observables, we need to compute expressions of the form

~ Tr [OAe’Bﬁ ]
(O) = ——— (2.1.6)
Tr [e*ﬁH ]
Within the framework of quantum field theory, this is typically achieved by introducing source
terms into the partition sum

2(8,J,J] = / (DRDy] o Selnil+[ ' J@n(z)+i(@) (@) (2.1.7)

so that we end up with the generating functional 2(3,.J,J]. We may take corresponding
derivatives of arbitrary order

1 6mz2(p,J,

_ J  [1D0Dn) (@) .. n(E,) e Seln
T 20J(7)...00(F,) - ; (2.1.8)

(n(Z1)...n(Z,)) [[D7Dy] e Selnil

J=J=0

allowing us, to obtain n-point functions of any desired order.

2.2 Transfer matrix & time discretization

Although it is natural to describe fermionic theories in terms of the Grassmann path integral,
this description is not ideal in the context of numerical calculations. Loosely speaking, this is
due to the simple fact that we cannot just take statistical averages of products of Grassmann
numbers as they lack actual numerical values. For practical purposes, it is thus more convenient
to reformulate Eq. (2.1.3) in terms of transfer matrices in the Hamiltonian picture. We keep the
time discretization introduced above and write

Ng

He—mﬁ] = Tr [T, (2.2.1)

T=1

Z—Tr[

where we call T'the normal-ordered transfer matrix for a single time slice. A product of transfer
matrices is itself a propagator over multiple time slices, as visualized in Fig. 2.1.
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In the limit of A7 — 0 we then recover Eq. (2.1.3). Furthermore, it is straightforward to
implement an arbitrary number of Lagrange multipliers such as the chemical potential for the
grand canonical ensemble:

T(NT,/J%) = T e BlmNtm Ny (2.2.2)

For the further (formal) development of the method it does not matter whether we explicitly
write down these terms since they can be absorbed into the one-body part of the Hamiltonian.

From a computational standpoint we have not profited as of yet - we still need to diagonalize an
interacting Hamiltonian which is a very costly task. The small time step A7, however, allows for
a controlled approximation that splits the exponentials of the generally noncommuting parts flo
and ﬁint at the expense of a discretization error:

efAT<I:IO+I:Iint> — e*%ﬁOQ*ATﬁintef%ﬁO + (9<AT3) (223)

This procedure is called the Trotter-Suzuki decomposition [88]. It is worth noting that there
exist several versions of such a discretization, also including formulations taking into account
higher-order terms in the time step. The symmetric third-order decomposition in Eq. (2.2.3)
reflects the standard-choice for auxiliary-field methods due to the positive coefficients which
implies an absence of a sign problem.

2.3 The lattice

Before treating the transfer matrix introduced in the previous section, we introduce a central piece
of the numerical methods of this work: the spatial lattice. We start by again considering Eq. (2.1.4)
which defines a field theory with an infinite number of degrees of freedom labeled by the continuous
variables Z and 5. The procedure to obtain this expression involves chopping the temporal
direction into small segments and then performing the limit to infinitesimally small discretization.
In order to obtain a finite number of degrees of freedom, we refrain from taking this limit,
which corresponds to a discrete temporal direction.? A similar step can be done for the spatial
coordinate, where the fields ¢ (%) are defined to live only on integer multiples of the lattice
spacing a. This allows us to write the model in discretized form:

. - AN\ - SO
A= S () b 55 .
% o j o
where the index i denotes the lattice coordinates (z; = n,1, ... Ty = ndci) and A,;; is the second

order difference matrix summed over all spatial directions:

1 d
A= > {%m +0, =26, ) (2.3.2)
k=1

2In fact, the continuous formulation for Grassmann fields is purely symbolic as there is no numerical value
associated with then and hence no notion of w being a small quantity for arbitrarily small AT.
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The discretization of space is not unique and variants such as the honeycomb lattice or the
Kagome lattice are frequently used in condensed-matter studies® and even random lattices have
been used in the context of lattice-QCD. For this work we stick to equally spaced lattices in d
dimensions leading to the spacetime volume of N9 x N 3 lattice sites and a coordination number
of 2d. Furthermore, we fix the lattice spacing to a = 1 so that the temporal step A7 sets the
lattice units.

Naturally this procedure is very convenient for numerical investigations as it would be impossible
to treat an infinite number of degrees of freedom on a (classical) computer. However, the
discretization of space has subtle consequences and, strictly speaking, means that we are dealing
with a different theory. In order to obtain the properties of the continuum theory it is important
to relate the couplings of the continuum field theory to the lattice version. For low-energy
scattering properties this can be done by using Liischer’s formula [89, 90] which relates the
interaction parameter g with the s-wave scattering length. The central question then is whether
a sequence of lattice theories with increasingly finer lattice spacing a and properly renormalized
physical couplings approaches the correct continuum limit.

2.3.1 Momentum space cutoffs

The effect of a spatial lattice can be made clear by considering the Fourier transform of a
function f defined on the lattice sites na, with n being integer:

f(na) = /OO dk f(k)ethna = / dk f, (k)elkne, (2.3.3)

—00 —

203

Thus, the consequence of a discretized spatial coordinate is a periodic (but continuous) momentum
space commonly referred to as the first Brillouin zone (BZ). Effectively this introduces an
ultraviolet (UV) cutoff associated with the minimal length scale a and therefore makes the lattice
theory UV-finite. Going through a sequence of lattice spacings then corresponds to studying the
cutoff dependence of the regularized theory.

In practical applications, the number of lattice sites needs to be restricted to a finite number,
i.e. we have to consider finite system sizes. Consequently, the momentum space will not
only be periodic but also discrete, leading to a dual lattice related through a discrete Fourier
transform (DFT).* This so-called infrared (IR) cutoff leads to a minimally accessible momentum
scale and thus to potential issues once we are interested in low-energy physics. These problems
become especially severe near phase transitions, as critical phenomena cause long correlation
lengths and ultimately are challenging to resolve because of the finite system size.

It should be mentioned that the choice of the lattice model that eventually leads to the correct
continuum version is not unique. This opens the possibility to devise so-called improved actions
with the objective to optimizing the numerical methods for faster convergence towards the
continuum limit [91-95]. However, improved actions are not considered in this work.

3The usage of specialized lattice geometries is motivated by the crystalline structure of certain alloys and
minerals or synthetic materials such as graphene.

4The discretized momentum space can also be understood by simply reversing the above argument: through a
discrete real space we obtain a bounded momentum space. Here, we obtain a discrete momentum space through a
bounded spatial extent.
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2.3.2 Dispersion relations on the lattice

Along the lines of improved actions (but by far not as sophisticated), we may choose from a set
of available dispersion relations to reduce the systematic effect of the discretization. The form
in Eq. (2.3.2) leads to a tight-binding dispersion relation

Hy =" "4l (1—2t, cosk), (2.3.4)
o k

which corresponds to the hopping term in the Hubbard model with hopping parameter ¢, ~ m_?

and is the standard choice for condensed-matter studies. Alternatively, we may choose an “exact”
dispersion relation in momentum space that reproduces the correct continuum energy spectrum
up to arbitrary momenta

- o~ k2
Hy=3 2% Uitorg, — (2.3.52)
o k o
=3 9 ke (2.3.5b)
o k

Here, €, denotes the single-particle energy. This expression is as close as possible to the
thermodynamic limit and thus introduces the least amount of systematic errors. As we are
interested in continuum physics we shall use this form for our further investigations.

2.3.3 Discretization effects for Fermi gases

As it was mentioned above, the IR cutoff becomes problematic for low-energy physics, i.e. at
low temperatures or near phase transitions. For Fermi gases, the behavior can be explained by
considering the occupation probabilities in terms of the Fermi-Dirac distribution. Since the mean
energy is proportional to the temperature, higher energy states are more likely to be occupied in
the high temperature regime. This is where a lot of states are available on the lattice due to the
(quasi-)degeneracy of different directions® and the vanishing separation between energy states.
At low temperatures, on the other hand, the probability of low-lying states to be occupied is
strongly enhanced. Since these low-momentum states are distributed much more sparsely we
face resolution issues as the temperature decreases, i.e. we cannot resolve Fermi surface physics
such as Cooper pairing sufficiently well if the spatial system size is too small. To illustrate this
behavior, the Fermi-Dirac distributions on a 3D lattice are shown in Fig. 2.2 for various (5, N, )
configurations. As /3 increases (i.e. the temperature decreases), the Fermi surface becomes more
pronounced and larger lattices are required to resolve it.

2.4 Auxiliary-field transformations

Having introduced a finite set of degrees of freedom, we are now in a position to address the
transfer matrix defined in Eq. (2.2.1). The Trotter decomposition separates the kinetic and
the interaction parts of our Hamiltonian, and while the former are straightforward to treat we
have to apply more effort to deal with the latter. The strategy is to decouple the interaction
so that we end up with a linear occurrence of one-body operators coupled to some external

SFor instance, the (k,, k,,k,) = (1,0,0) and (0,1,0) in a 3D lattice are energetically equivalent.

xr yr vz
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Figure 2.2: Sketch of the available energy states (red dots) for various spatial lattice sizes N,

and inverse temperatures 5. The corresponding Fermi function f(F) in the continuum is shown
as dashed blue line and the chemical potential is set to = 1 (in arbitrary units).

field, rather than a quadratic occurrence. This is achieved via a so-called auxiliary-field or

Hubbard-Stratonovich (HS) transformation which originally was proposed by inserting a suitable

factor of 1 and subsequently performing a Gaussian integral through an appropriate coordinate
shift [96, 97]. For a single spacetime lattice point the standard form reads

. 1 o0 1 .5 .~
e—ah® — / do e AP 10d.
ma )

Here, p represents a fermionic density operator and ¢ is the bosonic auxiliary field. For practical
purposes the form in Eq. (2.4.1) is not well suited. Conveniently, due to the anticommuting nature
of the fermionic operators, there are many different auxiliary-field transformations available,
suitable for different physical systems and/or algorithms (see, e.g., [86, 98]). For condensed-matter
lattice systems, for example, discrete decompositions are often the variant of choice [99]. For the
purpose of this work, however, it is necessary to use a continuous decomposition, since only then
can we exploit the numerical methods introduced in the later chapters of this thesis. Additionally,

(2.4.1)

it is convenient to use a bounded version of the auxiliary-field transformation [98], since then we

do not necessarily have to deal with stabilization issues stemming from a separation of scales
(see, e.g., [100, 101]).5 The form we will use may be written as

o IATOID, / % [1+ prAsin ¢] [1+ p,Asin ]

/.

the range of accessible 8 values.

(2.4.2a)

(2.4.2b)

6For large values of 3, the scale separation might still be problematic. A careful investigation could increase
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where p, = 153120 denotes the fermionic density operator and A = 1/2(e~927 — 1). Details of
the derivation of Eq. (2.4.2a) can be found in Apppendix A.1. For our further discussion of the
auxiliary-field method, the exact form of the transformation is not essential, as suggested by the
second line that defines the single-body operators f/a(gﬁ).

We may now perform such a decoupling of the interaction at every point of our spacetime
lattice. Note that since the decomposition is independent for every spacetime coordinate, the

auxiliary field has a degree of freedom per spacetime lattice site which we denote by the index
¢;,. Therefore, we have to change Eq. (2.2.1) such that it reads

Npg
HT(T, T— 1)] : (2.4.3)

where we have introduced the 7~dependent transfer matrix:

~ A ~ AT .
T(r,7r—1)= ERI [H/ S ¢ir)V) (i) BRI (2.4.4a)

/ Hd¢” { QTZkﬁakfak
/ Hd% V. (6.,)B, . (2.4.4¢)

-7 1 U

AT
R Pokeak} (2.4.4b)

The tensor product over the spin-species arises through the decoupling of the interaction which
causes the operators to act on different sub-spaces (one per spin-species). Furthermore, in the
last line we have implicitly defined the operator B as a shorthand notation. Inserting the above
expression into Eq. (2.4.3) yields

Ng
2= / D¢ Tr X B,V,(4,)B, (2.4.5a)
= /zw Tr [T,(8,0)] , (2.4.5b)

where the last equality defines the field-dependent propagator T as the product of single step
transfer matrices and we have introduced the path-integral measure

D = H H d¢” : (2.4.6)

Since the product over all time slices is nothing but a string of one-body operators, we may
perform the trace over the Fock space:

Ny Ng
[I R B,V,(6,)B, | = det [11 + [ X B,V,(¢,)B (2.4.7a)
=1 ©O =1 N(;
=[] det |2+ ][] B,V,(¢,)B (2.4.7b)
o =1
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= [ [ det Mg, (2.4.7¢)
o

where the last line of the above expression defines the so-called Fermi matrix M e Note that
while the trace on the left-hand side still contains field operators (as indicated by the hats) the
determinant on the right-hand side is taken over some matrix representation of these operators.”
A derivation of the first equality is given in Apppendix A.2. Finally, we arrive at the expression

for the path integral

2= / D [ [ det Mg (2.4.8a)
= / D e Slel (2.4.8b)

The action is given by
S[¢] = =) Indet M. (2.4.9)

We have achieved the goal set out for this section: to write down a path-integral representation
of the partition sum that reflects our model of interest. Is is worth noting that an equivalent
expression in terms of bosonic variables could as well have been derived in the Lagrangian picture
starting from a discrete version of Eq. (2.1.4). In fact, such an approach is regularly employed
(see, e.g., [102] and references therein) and ultimately the choice between the representations is a
matter of convenience.

Such a bosonization procedure is very common in high-energy and condensed-matter physics and
bears an analogy concerning the interaction: since the two species are decoupled, the auxiliary
field ¢ mediates the interaction between the two fermion species and thus plays the role of an
exchange boson in our lattice theory. Only the integration over all possible values of ¢ restores
the original interaction between the fermions. Analogously, we may interpret this procedure as
trading a highly complicated interacting problem for an infinite sum of noninteracting problems
in a background field.

The final expression in Eq. (2.4.8) does not look particularly friendly at first glance - after all we
would have to deal with a N2 s-dimensional integral over a continuous field ¢. However, under
certain conditions, these integrals are amenable to stochastic evaluation by means of Monte Carlo
methods. We shall see this in the following chapter, where we introduce the basic concepts of
stochastic integration as well as possible issues that arise with such a treatment.

The above derivation constitutes the basis of the so-called determinantal MC approach [103] and
although we have derived the formalism with the specific Hamiltonian of Eq. (2.1.1) in mind, we
could have done so for a large class of models. In fact, the approach is extremely versatile and
routinely applied in such diverse areas as quantum chemistry, polymer physics, condensed-matter
physics, high-energy physics and beyond.

Finally, it should be noted that the decoupling does not necessarily have to happen in the density
channel but could also be done in the pairing channel. Although this leads to larger matrices,
and thus to increased numerical effort, such an approach could lead to more stable results for

"This step is often referred to as “integrating out the fermions” since all that is left are bosonic degrees of
freedom.
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attractive systems, particularly in the vicinity of a superfluid phase transition. Moreover, the
interaction does not necessarily have to be between two particles - for instance, auxiliary-field
transformations for three-body contact interactions have been studied recently [104, 105].

2.5 Projective formulation

So far, the method has been implicitly assumed to describe systems at finite temperature as the
imaginary-time direction naturally arises as the inverse temperature. Conveniently, the approach
can be extended to study systems at zero temperature, i.e. in the ground state, by defining the
partition function as the overlap of the ground-state (GS) wavefunction

zZ = <¢GS ’ ¢GS>- (2-5-1)

The task is now to find |¢qg) which can be achieved by a projective approach. We define our
partition function as a function of the projection time [3:

2(8) = (Yo [U(B) ¥ ), (2.5.2)

where U (B) is the imaginary-time evolution operator and |1 ) represents a trial wavefunction
that must have a nonzero overlap with the true ground state. In this case, it can be shown that

lim 2(3) (P [UB) 7)) = (Yas|vYas) (2.5.3)

= lim

B—oo B—o00

and the rate of convergence will in general depend on the gap between the GS and excited

states.® Now we can follow essentially the same procedure as above: discretize the imaginary-time

direction and perform an auxiliary-field transformation in order to end up with a path-integral
representation of the partition function in analogy to Eq. (2.4.8).

To find the transfer matrix for a given imaginary-time slice, we first introduce some single-particle
basis consisting of the states labeled by the quantum number k;:

k) =9l 0). (2.5.4)

The standard choice for | ¢ ) in Fermi systems is a Slater determinant (SD) composed of these
single-particle states

N, N,
|p) :Hiﬂkj‘(n ® HT;L%‘(U (2.5.5a)
" T
=[I[%s)] 10 e [T[4]s] [0, (2.5.5b)
j=1 J j=1 J

where we have assumed a system with a fixed amount of particles N, per spin state, i.e. the
canonical ensemble. The matrices S, uniquely represent the SDs in a given basis and are of the

80f course, there will always be a nonzero gap in finite lattice systems. Nevertheless, for Hamiltonians that are
gapless in the continuum (spin frustrated systems for example) the projection to the ground state is a challenging
task since the gap imposed by the lattice will necessarily go to zero as the continuum limit is approached.
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shape N x N_. Here, N denotes the number of states in the basis (in our case the number of
lattice sites). These SDs have a set of advantageous properties: if we act on an arbitrary SD with
the exponential of a single-particle operator, we again obtain a SD (Thouless theorem [106]).
Another nice property is the fact that the overlap between two SDs is just the determinant of
the representing matrix product

(¢ [) = det [S"S], (2.5.6)

where | 9" ) and |1) are two different SDs represented by S” and S, respectively [100].

We can immediately connect these properties to Eq. (2.4.5), which is just a long string of
exponentiated single-particle operators. This allows us to write the time-propagation operator
Ug (B) at a given auxiliary-field configuration as the overlap of two SDs:

(¢p [UZ(B)] ¢p) = det [M(B)] (25.7)

where the matrix elements of the Fermi matrix are given by

[Mg(B)] = (blUZ(B)a). (2.5.8)

ab

Finally, we again arrive at the path-integral representation of the ground-state partition function
2z = /z)qs [T det g (2.5.9)
o2

Generally, we are free to choose any single-particle basis to represent the SD. The most convenient
choice for the calculation of ground-state properties are momentum eigenstates. In this case the
energetically lowest states will be filled up to the Fermi level (per spin species). Such a state will
be a reasonably good guess at least in the weakly interacting regime as the SD is the ground
state for the noninteracting Fermi gas. For strong interactions, the guess is still valid, however,
more sophisticated wavefunctions may drastically improve the convergence properties as they
might lie closer to the true ground state of the interacting system. An example that has been
investigated is the choice of a BCS-type wavefunction as a trial state which was shown to be
effective for strongly attractive systems [107-109].

2.6 Calculation of observables

The final part of this chapter is devoted to the computation of observables within the auxiliary-
field framework. As a consequence of the decoupled interaction, the problem reduces to a large
number of noninteracting one-body problems in a background field. This leads to the applicability
of Wick’s theorem and constitutes one of the major advantages of auxiliary-field methods: the
possibility to construct arbitrary observables from the knowledge of the one-body density matrix
at a given field ¢. Technically, this means that all we have to do is find an expression for the
quantity

p%(8) = () (2.6.1)
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where the subscript ¢ denotes the evaluation at a given auxiliary field. Through contractions of
the one-body correlation function it is now possible, in principle, to obtain correlation functions
to arbitrary order. In practice, however, the maximum obtainable order will be limited by
numerical constraints and essentially becomes a matter of statistics.

In order to obtain an expression for generic observables (including the one-body density matrix)
we again introduce a source term coupled to the desired operator similar to Eq. (2.1.7). The

source-dependent partition sum then reads

2] = / Do / D6 Te [T,(8.0) 0 T,(0,0)] (2.6.2)

where we have used the freedom to choose at which time slice we introduce the source term. Even
an extension to time-dependent observables is possible and merely requires the introduction of
multiple sources at different time slices. In this work, we will only consider equal-time observables
and, without loss of generality, we set § = 0 unless noted otherwise.

For the evaluation of expectation values, we take the derivative with respect to J and evaluate it

at vanishing source term:

(0) = i‘agl[fj] - (2.6.3a)
= % / D¢ det My, Tr [T,(0,0) My T,(5,6) O] (2.6.3b)
= [ 20 Plglols). (2630

A detailed derivation of this expression can be found in Apppendix A.3. The expression Eq. (2.6.3c)
motivates a probabilistic interpretation with the normalized probability density

1

Plo) = %

det M, (2.6.4)

and thus we have expressed expectation values as a weighted integral over auxiliary-field configu-
rations. This interpretation will be the central part in the subsequent chapters where we aim to
evaluate these path integrals via stochastic methods.



3 Stochastic sampling &
the sign problem

“If you don’t believe in random sampling, the next time
you have a blood test, tell the doctor to take it all.”

Arthur C. Nielsen

The purpose of this chapter is to briefly introduce the basics of stochastic integration, more
commonly referred to as Monte Carlo (MC) methods. At the heart of these methods is the
astonishing fact that it is possible to address physical questions by appropriately accumulating
random numbers. The anecdotal origin dates back into the late 1940’s when Stan Ulam, then
working at Los Alamos National Lab, was recovering from surgery [110]. While playing cards,
he was wondering what the chances would be to lay out a successful Canfield solitaire game
consisting of 52 cards. After abandoning the idea to come up with a combinatorial answer, he
resorted to the more practical idea to play a hundred games and estimate the probability by
the percentage of successful games. It turns out, that the approach can be extended to a whole
variety of problems. In fact the importance of MC related methods can hardly be overstated.
Applications reach far beyond an academic setting and are commonly found in such diverse areas
as engineering, economics and even life sciences.

In the following, we formalize these considerations and highlight key ingredients needed for
efficient sampling strategies. Undisputedly, the most fundamental building block of modern
Monte Carlo algorithms is the concept of Markov chains, which essentially describes a time-
ordered sequence of random samples. A large class of methods are based on this strategy and
are generically referred to as Markov Chain Monte Carlo (MCMC). While we leave the specific
algorithms to construct such Markov chains for the subsequent chapter, we address some technical
details as well as possible shortcomings that arise with such a treatment. Finally the so-called
sign problem is discussed, particularly for the case of fermionic theories, along with a selection of
methods to avoid this nagging issue.

3.1 Sampling path integrals

To connect Stan Ulam’s card game to our problem at hand, we consider the path-integral
representation of the partition function derived in the previous chapter. Typical spacetime lattice
sizes of interest in this thesis are on the order of d = 10° sites. By using an integration grid of n
points per degree of freedom, we would end up with a sum of n1%° terms. Computing this sum is
not only not feasible, but straight up impossible to achieve with any present or future digital
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spatial position

imaginary time

Figure 3.1: Examples for representations of configurations. (Left) Worldlines of a particle (in
imaginary time) represented by a vector of N, entries for the positions at a given time. (Right)
Snapshots of the 2D Ising model at high and low temperatures.

computer.! In fact, stochastic algorithms are already superior to deterministic methods at much
lower dimensionality. As we shall see below, the error associated with these algorithms scales with
N—1Y2 where N is the number of drawn random samples. Deterministic approaches, on the other

—¢/d_where ¢ encodes the efficiency of a given algorithm.

hand, produce an error that behaves like n
This fact, often called the curse of dimensionality, clearly shows that stochastic treatment will
outperform deterministic methods already at relatively low dimensionality, regardless of the
specific algorithm. It is therefore save to say that without random sampling techniques the
numerical study of ultracold Fermi gases in ab initio fashion would be far beyond our possibilities.
Having established that stochastic treatment is the way to proceed, it is instructive to write the
path integral in Eq. (2.6.3¢) as a finite sum over N randomly chosen field configurations weighted

with their appropriate probability P[¢]:

=0. (3.1.1)

In this thesis, a random sample (or random state) always refers to a snapshot of the auxiliary
field ¢. More generally, a sample can be anything that represents a term in the partition sum.
Particularly visual examples include the two-dimensional Ising model, which is described as a
square lattice with spin-up and -down values at every site, or the worldlines of particles moving
in space. Both examples are depicted in Fig. 3.1. Furthermore, we note that the representation
of samples for a given theory is by no means unique. Different algorithms will in general rely
on different decompositions of the partition sum. In the context of auxiliary-field methods, for
example, this could be done by using different Hubbard-Stratonovich transformations, as already
remarked in the previous section.

Regardless of the exact nature of the samples, Eq. (3.1.1) clearly must be an approximation,
since the true answer can only be obtained by collecting all possible configurations. Stated
differently, O = ((3) holds only in the limit of N — oo , which is impossible to reach in practice.
Consequently, our estimate of the sample mean O will be different from the true expectation

LAt the time of writing this thesis, the best computer in the TOP500 list was able to perform roughly 10%°
FLOPS per year.
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value of the observable (O) by some error. This uncertainty is only of statistical nature and can
be quantified by considering the variance of the mean,

Var(0] = 0% = (0 — (0))%) = %Var[O], (3.1.2)

which can be derived by invoking the central limit theorem (see, e.g., [111]). This is a major
benefit of stochastic methods in general: not only do we get answers to the questions we asked,
we also get a quality assessment of this answer in the form of an unbiased statistical uncertainty.
Moreover, we can systematically improve this error by accumulating more samples, albeit at a
rate that requires a hundred times more effort to gain another digit of precision. Note, however,
that this uncertainty does not include systematic bias introduced, e.g., by the finite extent of the
system under consideration.

To highlight a potential issue with this simple strategy, we may conduct the following thought
experiment: say we have to stochastically integrate a strongly peaked function f(z) in some
finite interval [a,b]. According to the above procedure we would start by producing a set of
evenly distributed z-values, evaluate the function at this point and finally average according
to Eq. (3.1.1). Since the function is strongly peaked, however, we would “miss” with most of our
random guesses, that is, we would sample in a region with no or little contribution to the total
sum. This is a manifestation of the so-called overlap problem which causes a bad signal-to-noise
ratio. Consequently, we will have to produce a large number of random samples to get results
within reasonable accuracy.?

This issue would be mitigated if we were able to draw samples only from regions where f(z)
has decent support, i.e., only draw samples from regions that contribute significantly to the
observable. In fact, the ideal case would be if our random samples were already be distributed
according to the desired probability distribution - we would not have to worry about missing the
distribution at all. In this case, Eq. (3.1.1) reduces to

0= NZ()[gbi]. (3.1.3)

This strategy, referred to as importance sampling, reduces the variance of our estimated averages,
and thus we obtain equally precise results at a cheaper numerical cost (i.e., with a lower amount
of samples).

At first glance, this idea seems to merely be a neat optimization to save some computational
effort. However, it becomes absolutely indispensable once we are interested in simulating
quantum mechanical problems, where the space of configurations (i.e., the Hilbert space) grows
exponentially with the system extent. Importance sampling ensures that we only consider a
small, but representative, subspace of the vast configuration landscape. This allows us to obtain
averages within a computational time that scales only polynomially with the system size (particle
number, volume or inverse temperature) rather than exponentially.

While this strategy works in theory, there is a major potential bottleneck: for most problems
of interest, the target probability density is either not known or it is exceedingly expensive to

2Equivalently, this can be considered as another manifestation of the dimensionality problem. We can
conceptualized it as follows: consider two d dimensional spheres with radii r, = 0.997,. For very large d the ratio
V 4/ V5 is essentially zero and most of the weight lies close to the surface of the larger sphere. Uniform sampling
in the d dimensional space will thus miss most of “the action”.
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compute. By examining Eq. (2.6.3c) we find that the partition sum appears in the denominator
and we indeed face the issue of an unknown target density. The intuitive way to proceed would be
to construct an algorithm that works with ratios of the target distribution rather than computing
the full distribution. This allows for importance sampling in an efficient manner and, as we shall
see in the following chapter, is the underlying idea of almost all state-of-the-art MC algorithms.

3.2 Markov chains

As established above, the quality of a stochastic calculation increases with the number of random
samples. For precise measurements it is therefore of utmost importance to create a sufficient
amount of configurations efficiently. From the previous discussion, it is evident that creating
uniformly distributed samples from scratch at every iteration results in a bad signal-to-noise
ratio as we will miss the important integration domain in most cases, particularly in a large
number of dimensions.

An alternative approach is to take a configuration and introduce some change to it. For example,
we can think of a spin-configuration for the Ising model on a finite lattice and simply flip a spin
on a random site to produce a new configuration. Clearly, this is much cheaper than coming up
with a new configuration altogether. Additionally, for many cases of interest it is possible to
compute the weight of such a minimally changed sample with significantly reduced cost through
some clever usage of linear algebra.? Repeated alteration of samples, referred to as updating,
then leads to a time-ordered series of random states. If the process is memoryless, that is if the
change to the next state only depends on the current one, we call the sequence Markov chain
which represents a certain kind of discrete random process. So, by altering states, rather than
inventing new ones from scratch every time, we ultimately perform a random walk in the space
of configurations.

While the idea is conceptually intuitive, the main question still needs to be addressed: does such
a procedure reproduce correctly distributed samples? Luckily, the concept of random processes
and Markov chains reaches far beyond MC algorithms, and consequently we can draw from a
vast literature on the topic. In the following, we merely lay out the basic properties that random
processes have to fulfill in order to be useful for numerical calculations. For advanced treatment
see, e.g., [113].

The above considerations are best formalized by considering the transition matrix 7}, whose
elements are given by the probability to jump from the state ¢ to ¢’:

Tyy = P(é — ). (3.2.1)

To represent probabilities, the matrix has to obey »_ & Ty =1 and Ty, > 0. If we let the
matrix act on some probability density 7[¢] we obtain a “propagated” distribution function

7o' =D 7l¢]l Ty (3.2.2)
¢

which represents one step in the discrete random process. Repeated application of the matrix
moves through states along the Markov chain, and, by virtue of power iteration, factors out the

3If matrix inversion is involved in the weight calculation the paradigmatic example is the Sherman-Morrison
formula [112].
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dominant eigenstate

1 — 7 (N)

Pl¢] = ]\}Lmoo o1 Ty o, o T o = 1\}520 Ty 4, (3.2.3)
{¢1}

It can be shown that P[¢] is indeed the desired target probability density if the following two

important conditions are fulfilled:

(i) The process needs to be ergodic. This means it needs to be possible to reach every
configuration in a finite sequence of steps. Formally this can be expressed by requiring that
there exists a finite IV such that

N
i) #0. (3.2.4)

Stated differently, we need to formally be able to scan the full configuration space to obtain
the correct expectation values.

(ii) The limit of Eq. (3.2.3) has to exist, i.e., the random process needs to arrive at some
equilibrium distribution which is a left eigenstate of the transition matrix:

Pl¢'] =) Plg] Ty (3.2.5)
¢

which makes it a stationary process. The condition is automatically fulfilled if the process
obeys the stronger requirement of detailed balance:

P[] Ty = P[¢'] Ty (3.2.6)

Assuming that these conditions are fulfilled, we arrive at the practical protocol: we may start out
with a random configuration, evolve it probabilistically according to the transition matrix and
ultimately end up with a distribution that reflects the problem under investigation.* Generically,
we may write for the next sample in the sequence

o) = Flpm)] (3.2.7)

where the subscript n corresponds to the “time” that has passed in the Markov process. The time
average over these samples, after discarding N, equilibration steps, then gives us the expectation
value according to Eq. (3.1.3):

1 N

N — Ny, i=Np,+1

0= O[p]. (3.2.8)

While the above theoretical framework tells us that such a prescription works, it does not tell
us how we can implement it. It turns out that there is quite some freedom to construct a valid

4Following the power-method argument, this implies that all but the dominant eigenvalues of Ty have a
magnitude smaller than unity. The gap to the next-to-leading eigenvalue then determines the rate of decay to the
equilibrium distribution.
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transition matrix. This has led to a large variety of MCMC methods specialized for specific
problems. The details of the various algorithms relevant for this work are presented in Chapter 4.

3.2.1 Autocorrelation

The usage of Markov chains introduces the problem of correlation between subsequent samples.
This causes two distinct phenomena which need to be addressed in order to trust the values that
our simulation produces (see [114] for a comprehensive formal treatment).

First of all, we have to monitor the convergence to the equilibrium distribution. Since the
stochastic process starts with an initial random configuration it is necessary to discard some
samples at the beginning to avoid so-called initialization bias. By virtue of the conditions discussed
above, convergence to the appropriate probability distribution is guaranteed. However, we do
not know when this happens. The rate of convergence is determined by the so-called exponential
autocorrelation time T,

ext

Without knowledge of 7., the assessment of the number of steps to discard becomes nontrivial,

which turns out to be very challenging to extract in practice [114].

and typically one resorts to a heuristic estimation. The rule of thumb in practical applications
ranges from discarding 10% up to 50% of the samples but this is in general algorithm dependent.
Moreover, we could face the issue of metastability, which means that we have hit a region in the
configuration space that is hard to escape. This could lead to a serious underestimation of the
equilibration time and thus wrong results due to a systematic bias. A way to address this issue
is to check the consistency of the results amongst runs with different initial conditions as well as
monitoring the running average of observables.

The second issue concerns the statistical independence of the samples for the error estimate.
Since we only update an existing state by some small deviation it is unsurprising that two
subsequent samples will not yield fundamentally different results. As a consequence, we may
underestimate the error by simply using Eq. (3.1.2) which assumes statistically independent
samples. To incorporate the effect of correlations we instead have to use

- \/Var[O] R, (3.2.9)

where T,

samples that are to be discarded between two statistically independent measurements or, in other

denotes the so-called integrated autocorrelation time. It quantifies the number of

words, effectively reduces the number of independent samples.” It is important to differentiate
between 7, and the previously discussed exponential autocorrelation time: While the latter is
a measure for the equilibration time, the former dictates the total runtime of our simulation.
Clearly, the most efficient algorithms are the ones with the lowest autocorrelation and indeed
Tint 1S Often used as a benchmark quantity to compare across algorithms.

A straightforward way to calculate 7, is to use the convolution theorem to obtain the autocor-
relation function and subsequently integrate over this function. However, this strategy can be
cumbersome and plagued by a large amount of statistical noise which often leads to a wrong

estimate of 7,,. Alternatively, unbiased error estimates may also be obtained with various other

int-

techniques such as binning [111], jackknife[115] and bootstrap [115]. A brief overview, as well as
the derivation of Eq. (3.2.9), is given in Apppendix B.

5Simply stated, we cannot learn as much about the average from correlated samples as from uncorrelated ones -
the integrated autocorrelation time quantifies that.



3.2 MARKOV CHAINS 35

update
configuration

initialize create random
simulation configuration

Y

average &
post processing

thermalized?

measure
observables

Figure 3.2: The flow diagram depicts a generic MCMC scheme. The specific algorithm only
manifests itself in the blue box, where the update scheme needs to be implemented.

The autocorrelation time generally differs between observables and also depends on numerical as
well as physical parameters. The latter dependence becomes particularly severe in the vicinity

of phase transitions: since 7;,, may be viewed as a susceptibility, it diverges with the power of

nt
some critical exponent when approaching the critical point. This phenomenon, referred to as
critical slowing down, implies that MC calculations quickly become costly in critical regions as it
becomes more expensive to produce decorrelated samples. The algorithms applied in this work,
however, do not suffer from this issue due to the usage of global updates rather than local ones

(e.g. a single spin flip). The exact nature of these updates are discussed in the following chapter.

3.2.2 Generic Markov chain sampling

The preceding sections lay out the general theoretical framework for MCMC simulations and
already hint at the large variety of its applications. The general structure of an MCMC
implementation in practice, however, very often follows the same simple recipe:

(1) Initialize the simulation. This could range from the setup of external libraries at runtime,

just-in-time compilation to the calculation of pre-computed factors.

(2) Pick a random initial state ¢. There are various options how this can be implemented: a
“hot start” typically refers to an unordered random state, while a “cold start” refers to
a symmetry broken configuration (e.g. all spins in the same direction in the Ising model
example). Alternatively, one could start at a pre-thermalized configuration from a previous

simulation.
(3) Update the configuration according to the update rules of the specific algorithm.

(4) If the equilibration time has passed (also referred to as thermalization): measure the
observables. If not: go back to step 3.

(5) If enough samples have been accumulated: compute averages and perform other post
processing steps (data export, cleanup, etc.). The criterion “enough samples” could be
decided through various mechanisms: a fixed number of configurations, by some numerical
tolerance of the results or merely a fixed amount of CPU time. If more samples are required:
go back to step 3.
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The procedure is summarized in Fig. 3.2. Evidently, almost all steps of any MCMC simulation are
generic with the exception of the update strategy and the computation of the observables. The
generic structure allows for the setup of a modular general purpose machinery with the obvious
advantage of reducing overhead coding concerning topics such as data persistence, integration
issues on HPC environments and other similar tasks. As a part of this thesis such a general and
extendable package for heavy duty MCMC calculations was developed and successfully employed
to obtain numerical results presented in the later chapters. The implementation is completely
devoid from any knowledge of the specific algorithm but merely provides the “empty hull” of an
actual MCMC simulation. The details of the algorithm are introduced by extending a generic
sampler class and providing essentially the update scheme as class function. A brief description
containing an overview of the glacs (generic Markov chain sampling) package, written in
Python3, may be found in Apppendix F.

3.3 Thesign problem

As mentioned in the beginning, stochastic methods opened up the possibility to study otherwise
intractable problems. Over time, many efficient algorithms based on the above considerations,
have been devised in order to study a large variety of physical systems. All of these algorithms
operate under the crucial assumption that the weight for a given configuration is positive
semidefinite and thus may be interpreted as a probability distribution. While this is the case for
the simulation of classical theories, where the weight is typically given by the Boltzmann factor
P[¢] = e PEl9] the situation is not a priori clear in the quantum-mechanical case. Especially
in theories containing fermions, the mapping to a classical sum of weights does not necessarily
produce positive terms. For the systems concerning the present work, this becomes visible by
reexamining Eq. (2.4.8): the determinant changes sign upon exchange of rows or columns, which
corresponds to the exchange of two fermions. More generally, the situation arises whenever the
theory is described by a complex action, thus leading to negative or even complex contributions
to the path integral. This issue, referred to as the sign or phase problem, is one of the most
fundamental problems in theoretical physics, as it hinders the exploration of strongly correlated
systems dramatically.

3.3.1 Reiweighting

At a first glance, the problem does not seem unsolvable. A naive strategy to remedy a negative
sign is simply to rewrite Eq. (3.1.1) in terms of the absolute value of the probability density,
known as reweighting:

>, Plél0g] 3,9 |Plg]| Ol
>, Pl %, P
S, P 0] T, 1P (o),

- 24, |P[¢]| Z¢ 9l Plg]| - () (3.3.1b)

(0) = (3.3.1a)

The subscript “pq” denotes expectation values with respect to the phase-quenched theory, whereas
expectation values without the subscript are obtained with the full probability distribution.
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Although this procedure produces weights that are guaranteed to be nonnegative, the required
computational effort scales exponentially with the system size. To illustrate this, we first recall
that the partition function may be written in terms of the free energy

Z=e P =BV (3.3.2)

with the volume V and the (intensive) free energy density f. Writing the average phase factor as
the ratio of the partition functions of the full and phase-quenched theories, respectively, then
yields

Q= (), =2/2, =PRIV (3.3.3)

Since the phase-quenched partition function represents a sum of nonnegative terms, it follows
that Z,, > Z or, equivalently, Af > 0. This implies that with increasing system size the average
phase vanishes exponentially. Analogously, (e190>pq can be shown to vanish exponentially, leaving
(O) as the ratio of two exponentially small quantities. The evaluation of such a ratio is in general
a challenging mission because of excessive statistical fluctuations. Considering the relative error

9 _ \/%/I\/<ei6>123q o <<eie>2>pq N ePVAS (3.3.4)
Q (€)pq VM -
reveals the exponential growth of the uncertainty with system size and inverse temperature as
a consequence of these large cancellations. Stated differently, this means that with increasing
system size we need to exponentially increase the amount of random samples in order to compute
the expectation value at a target precision.

Clearly, reweighting is not an efficient way to circumvent the exponential growth of the Hilbert
space in quantum mechanical simulations - after all, we might as well fully diagonalize the
problem, which shows similar scaling. Another naive approach, namely to simply ignore the sign
of each configuration, was shown to be an uncontrolled approximation that can lead to wrong
physical conclusions [116].

It turns out that there is no general prescription to deal with this issue and, even worse, it has
been shown that the sign problem belongs to the complexity class NP-hard [2] (nondeterministic
polynomial). A generic solution to the sign problem would imply a polynomial solution of all
problems in the category NP. The fact that, despite intense investigation, it is still unknown
if P = NP renders the chances of finding a general solution to the sign problem highly unlikely.

3.3.2 Tackling the sign problem - a brief overview

Although a general recipe for sign-free algorithms may forever be out of reach, many strategies
have been found to surmount a sign problem in specific scenarios. This is based on the fact that
the sign problem is not a fundamental property of a given problem and its badness often depends
on the representation (see, e.g., [117]). Through smart resummations and usage of symmetries

5From Eq. (3.3.3) it is easy to falsely conclude that there exist complex partition functions, as the generally
complex average phase-factor is given by the ratio of partition functions. However, this is only the case if the
partition functions are evaluated partially, such as with stochastic sampling. For the full theory all the complex
weights exactly cancel which leads to a real (and positive) average phase factor.
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many solutions have been found for specific problems. Perhaps the most famous example is the
repulsive Hubbard-model, which, for general densities, suffers from a severe sign problem. At half
filling, however, particle-hole symmetry allows to rewrite the problem appropriately such that it
can be simulated with conventional MC methods. For attractive fermionic systems relevant for
this work, the requirement is slightly less restrictive: as long as we consider an even number of
equally populated and otherwise identical spin species we may write for the weight

1

> (det M[9])*", (3.3.5)

Plg)
since the determinants are equal for all 2n species. This causes the weight to be positive
semidefinite and allows for a probabilistic treatment. In any other case, particularly at finite
mass- and /or spin-imbalance, the sign problem prohibits a straightforward treatment.

A full categorization of whether a given theory can be formulated in a sign-free manner is
challenging. However, recent advances based on symmetry considerations identified conditions for
the absence of a sign problem and thereby significantly extend the list of sign-free models [118-120].
Moreover, worldline methods may be formulated in a way that one-dimensional problems are free
of an oscillating sign regardless of any imbalance [121] (although 1D systems are often treated
with tensor networks or the density-matrix renormalization group (DMRG) method, which are
limited to low dimensionality). Recently, such an approach was applied to the few-body sector of
mass-imbalanced fermions [122, 123|. Alternative approaches for the fermionic sign problem in
lattices are based on suitable resummations [124] combined with the introduction of so-called
“dual variables” or “fermion bags” [125-127].

While the so-far mentioned methods are mostly based on resummations or the exploitation of
certain symmetries, there exists a variety of methods that attack the sign problem by escaping to
the realm of complex numbers, dubbed “complex plane methods” in [82]. In this thesis, we shall
heavily employ such an approach, namely the complex Langevin (CL) method, to circumvent the
above mentioned sign problem for imbalanced Fermi gases. Additionally, we employ a different
method that extends the imbalance parameter to the complex plane. Doing so renders the
probability measure positive semidefinite and conventional sampling techniques may again be
applied. The specifics of both approaches are discussed in detail in the following chapter.

Yet another complex-plane method, somewhat related to CL [128], is achieved by deforming
the integration contour into the complex plane and sampling along trajectories of (approxi-
mately) constant complex phase, called “Lefschetz thimbles” [129-131]. Once such a thimble
is identified, which itself is a challenging task that can be considered the bottleneck of the
approach, the sampling can be performed with a mild residual sign problem through a convenient
parameterization.

Finally, it should be mentioned that the recent surge of studies on the application of machine
learning techniques in physics involve first results to address the sign problem [132], albeit with
mixed success so far. In any case, note that this list of approaches to tackle the sign problem
merely provides a brief overview and by no means can be considered exhaustive. A more thorough
list of modern approaches to the sign problem, along with some algorithmic details, may be
found in recent reviews on the topic [82, 133, 134].
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“It is a mistake to think you can solve any major
problems just with potatoes.”

Douglas N. Adams

So far, the general framework of determinantal Monte Carlo sampling, along with possible
shortcomings of such a treatment, has been introduced. In this chapter, we lay out in detail the
specific algorithms applied in this work, with the goal of arriving at algorithms that are free of
the sign problem for imbalanced Fermi gases. The unifying concept is based on global updates,
which we introduce in a first step and subsequently connect to the algorithms relevant for this
work.

Along the way, the paradigmatic Metropolis algorithm [135] is discussed as a building block of the
the Hybrid Monte Carlo (HMC) method [136], which we discuss in the context of non-relativistic
physics. Although this approach relies on positive-semidefinite measures, and thus suffers from a
sign problem in general, the sign problem is absent in the case of balanced Fermi gases. Moreover,
we discuss an extension to so-called imaginary asymmetries, dubbed iHMC, as a way to treat
imbalanced Fermi gases within this approach.

The second part of this chapter is devoted to the idea of stochastic quantization, which was
introduced in the early 1980’s by Parisi and Wu [137]. The concept not only offers an alternative
interpretation of quantization in general, but also constitutes the basis of a class of powerful
stochastic algorithms. We justify its validity and set up the framework with the aid of a
pedagogical toy problem.

While stochastic quantization with real fields lacks the possibility to treat theories with complex
actions, it can be extended via complexification of the fields. This results in the so-called complex
Langevin (CL) method, which is the workhorse for subsequent chapters. Parisi proposed this
method shortly after the introduction of stochastic quantization and famously remarked “Nothing
forbids to write a Langevin equation for complex theories” in a seminal paper [138]. The potential
to provide a way around the notorious sign problem serves as motivation to apply this method
to non-relativistic Fermi gases. We shall see, however, that the mathematical justification of this
step is far from trivial and, in fact, impossible to achieve analytically for all but the simplest
toy models. Nevertheless, the success of the approach in a number of relativistic theories [139]
as well as nonrelativistic toy models [140] motivates an extension to the low-energy physics of
interest in this thesis.
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4.1 Critical slowing down & global updates

A major bottleneck in MCMC simulations is the problem of critical slowing down, which arises in
the vicinity of phase transitions. In such a regime, a slight perturbation away from equilibrium
(as introduced by random fluctuations) takes a long time to decay back to a steady state.! Since
we are interested in equilibrium properties, however, we have to wait a certain time for another
appropriate sample which “knows nothing” about the previous perturbation. A related reasoning
may be achieved by viewing the integrated autocorrelation time as a susceptibility [114] which
diverges at a second-order phase transition. Mapped to Markov chains, this implies strong
correlation between subsequent samples, and thus strongly increased numerical effort required to
precisely measure observables.

To arrive at possible solutions of this issue, we may again invoke the Ising model. A straightforward
update strategy for this model is to randomly flip single spins on the lattice, which essentially
only affects the neighboring spins. To obtain decorrelated configurations, however, changes at
length scales on the order of the correlation length £ are necessary. For large correlation lengths,
local updates will therefore perform poorly, as the perturbation wanders randomly on the spin
lattice and thus takes a long time to move further than £ [114]. This picture provides a physical
motivation for so-called global updates, which, instead of locally perturbing the sample, introduce
non-local changes. Unfortunately, these strategies are challenging to come by and often tailored
for specific physical models. Famous examples include the Swendsen-Wang algorithm [141], Wolff
cluster updates [142] and Fourier acceleration [143].

4,1.1 Thedriftterm

All algorithms employed in this work share the common usage of a global update strategy that
relies on the so-called drift term. For a given spacetime lattice site (¢, 7), the drift is given by

559

(4.1.1)
This quantity plays a central role in the update strategy as it determines, in large part, the
physical change towards the next state in the Markov chain (up to random fluctuations). With
the determinantal formulation introduced in Chapter 2, along with the corresponding definition
of the action in Eq. (2.4.9), the above expression may be rewritten as

Kl = e {2110 50 (1.1.2)

The variation of the Fermi matrix (of a single species) is given by

NT
wéigﬂ _ 5; []1 v, (4.1.30)

IThis can be made clear by analyzing an expansion in the order parameter. Far away from the phase transition,
the potential is (almost) harmonic, whereas at the phase transition it is at least quartic. In the former case the
state rapidly falls back to the equilibrium, whereas for the quartic potential a “creeping” solution is the case.
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Note that this derivation is generic until Eq. (4.1.4a). The dependence on a specific HS
transformation only comes in by explicitly performing the variation, which was performed
in Eq. (4.1.4Db).

The inverse of the Fermi matrix in Eq. (4.1.2) essentially dictates the computational effort.
However, the benefit of decreasing the decorrelation time often outweighs this cost and therefore
renders such an approach highly efficient. Moreover, this quantity is a necessary ingredient for
stochastic quantization, as shown below.

The variation of the action with respect to the auxiliary field, which formally requires ¢ to be
continuous, motivates the particular form of the HS transformation employed in this thesis. As
remarked already above, it is possible to describe fermionic lattice theories with a discrete HS field,
which is more efficient to store in memory (see, e.g., [144] for a state-of-the-art implementation).
The usage of the drift term, however, prevents such a treatment.

4.2 Interlude: the Metropolis algorithm

Having introduced the general principles of Markov chains, we now discuss efficient algorithms
for producing such sequences of states. Among the many possible ways to do this, the so-called
Metropolis algorithm (or the slightly more general Metropolis-Hastings algorithm) is most often
the method of choice [135, 145].2 Before diving into the non-local update algorithms relevant for
this work, we briefly elaborate on this algorithm as it is a part of the HMC method.

The underlying idea of the Metropolis algorithm is to first propose some change to a given
configuration ¢ and then to accept or reject this change based on its relative probability. If the
proposed configuration ¢’ corresponds to a higher probability density P[¢’], it is always accepted.
If its probability is lower than P[¢] (i.e., the current one), the new state is only accepted with a
certain probability. The smaller the ratio

Pl¢’]

T Plo]’ (4.2.1)
the less likely it is for the new state to be accepted. If it is rejected, the next state in the Markov
chain is again taken to be the current one, which effectively amounts to an increased sampling in
regions with a large probability density. Nevertheless, configurations with lower probability are
still sampled (as required by ergodicity) which allows the algorithm to accurately scan the entire
state space.

An intuitive understanding of this procedure can be gained by considering physical simulations.

2In fact, the algorithm is used so frequently that it was selected to be among the top 10 algorithms “with the
greatest influence on the development and practice of science and engineering in the 20th century” [146].
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Typically, the target probability is given by the Boltzmann factor e ##1?l where E[¢] is the energy
of a given configuration ¢. The acceptance probability is then given by r = ePEW-El9]) = ¢=BAE,
This implies that moves to states with larger energies (AE > 0) are accepted only rarely, whereas
energetically favorable configurations (AE < 0) are accepted with certainty.

Formally, the Metropolis-Hastings algorithm can be constructed by again considering the detailed
balance condition Eq. (3.2.6). The key step is to split the transition probabilities into a proposal
probability and an acceptance probability, such that the detailed balance condition reads

P[] g4 @y = Pld' ] Qo - (4.2.2)

The above expression states that we propose a move from ¢ to ¢" with the probability g4, and
accept it with the acceptance rate

Pl¢'] gy
04 = min [1, Ple} s ¢] . (4.2.3)
P [ ] Qpe’
Without loss of generality, we have used ay, = 1. For symmetric proposal probabilities,

i.e., gypr = 444, the Metropolis algorithm is recovered as a special case of the more general
Metropolis-Hastings algorithm. In this case, the acceptance rate reduces to Eq. (4.2.1). For an
educational in-depth derivation of the algorithm see, e.g., [147].

In practice, the update step of the MCMC flow (blue box in Fig. 3.2) can be summarized as
follows:

1. Create a new configuration ¢’ and calculate its weight P[¢’].
2. Draw a random number x with uniform probability in the interval [0, 1].
3. If x < r accept ¢" as the new state, otherwise re-use the current state ¢.

Evidently, the algorithm does not require the full probability distribution, but merely the ratio of
weights. Therefore, the strategy is particularly useful in cases where direct sampling is difficult
due to an unknown target distribution. Nonetheless, there is a severe restriction when it comes
to the sign of the weights: only positive ratios are eligible, and thus the sign problem sets the
limits of this otherwise powerful algorithm. In certain cases, as we shall also discuss below, the
problem may be mitigated by a suitable reformulation of the weights.

4.3 Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) algorithm, originally proposed in the context of lattice gauge
theories [136], constitutes a powerful global update algorithm heavily used in lattice QCD studies.
Here, we show how this technique can be used for the simulation of nonrelativistic fermions [86].
The central idea of HMC is to use molecular dynamics (MD) to explore the configuration space
of the auxiliary field ¢. To obtain a suitable representation, an additional fictitious field = is
introduced, which plays the role of the conjugate momentum of the field variable:

1 2

¢Sl 5 ¢Sz L ™ = Plg, ). (4.3.1)
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Figure 4.1: Update procedure of the HMC algorithm. Black solid lines represent the MD evolution
of the fields, which start and terminate at the black dots. While the states ¢ move smoothly
through the configuration space €, the values of the 7-field are randomized after every sweep
(indicated through the dashed arrows) and thus jump discontinuously in their state space €.

The integral over the 7 field merely constitutes a multiplicative factor in the partition sum
and therefore leaves the physics untouched. Consequently, the modified probability distribution
P[¢, 7] is proportional to the physical one we want to sample.

To obtain a new, globally updated field configuration ¢’, both fields are propagated along a
trajectory in the fictitious time ¢, according to Hamilton’s equations of motion:

8¢i7‘ _
T (4.3.2a)
aﬂ—i‘r _
o = Kulo) (4.3.2b)

For the numerical integration of these equations, a finite time step At needs to be introduced.
In practice, the length of a trajectory between two decorrelated configurations is typically taken
to be on the order of 1 such that a total of ~ 1/At,; integration steps have to be performed per
update. Since the above expression now contains the drift term K, [¢], this is a costly task and
ideally Aty is chosen to be as large as possible while still being numerically stable. Moreover,
the finite step Aty introduces a systematic error which needs to be addressed. This is where
the “hybrid” part of the algorithm comes in: to ensure that the correct probability distribution
P[¢, 7] is sampled, a Metropolis accept-reject step is performed after evolving the fields along
the trajectory.® According to the discussion in the previous section, the new configuration will
be accepted with the probability
[, Pl ]

Tavc = min [1, Plo, 7] ] . (4.3.3)
It can be shown that the proper evolution of the fields according to Eq. (4.3.2) conserves the
energy (also called on-shell propagation) [136]. Therefore, the acceptance rate is almost unity
and only affected by numerical shortcomings of the integration. Finally, after checking the

3The Metropolis step, loosely speaking, acts as a “safety net”. Should something go wrong in the propagation
of the field values (say, for instance, a singular drift appears), the accept-reject step takes care of that and the
algorithm tries to find a different next sample. This does not imply, however, that the HMC algorithm can operate
at arbitrarily large step sizes Aty.
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acceptance of the new configuration, the momentum field is randomized by drawing from a
Gaussian distribution. This shifts the configuration to a different energy shell and, loosely
speaking, changes the direction of the propagation in the state space of ¢.

The update procedure can be summarized as follows (also schematically depicted in Fig. 4.1):

1. Randomly draw the field 7 from a Gaussian distribution.

2. Evolve both fields ¢ and 7 according to the MD equations (4.3.2) for a trajectory of
length ~ 1.

3. Draw a random number x with uniform probability in the interval [0, 1].

4. If © < rgpye accept ¢ as the new state, otherwise re-use the current state ¢.

One may now wonder about the validity of such an approach. As hinted above, the integration
of Eq. (4.3.2) conserves the phase-space volume and is time-reversible, according to Liouville’s
theorem. However, this is only the case if a so-called symplectic (or geometric) integrator is
applied, which respects the symmetries of the equations. The most commonly used variant
of such an integration scheme is the Leapfrog algorithm, which we also apply in the studies
presented in this thesis. The conservation of the phase-space volume as well as time-reversibility
suffice to respect the detailed balance condition posed in Eq. (3.2.6). Specifically, the proposal
probability is symmetric, such that the Metropolis algorithm may safely be applied.

Despite the fact that the HMC algorithm is the workhorse in high-energy physics, its applications
to nonrelativistic systems remain relatively scarce. An early study, shortly after the initial
proposal of the method, applied the algorithm to the 3D Hubbard model [148]. Similarly, the
method was revisited recently in this context [149] and it was found to be inferior to state-of-
the-art determinantal MC implementations [144]. The unfavorable behavior of HMC in this
setting can be traced back to the computation of determinants of the large N, x N, Fermi matrix,
where N, is the number of spacetime lattice points. The algorithms applied in [148, 149] rely
on a stochastic evaluation of the fermion determinant (specifically, the pseudofermion method)
combined with a conjugate gradient procedure [150]. For such an approach to scale efficiently, the
Fermi matrix needs to be well conditioned, which does not seem to be the case for the Hubbard
model, in particular at large coupling and low temperatures. However, it was found that the
method performs exceptionally well for studies with electron-phonon interactions [149].

Other studies, including the ones presented in this thesis, implement the method similarly to
the original formulation of the determinantal MC algorithm [103], sometimes referred to as
determinatnal HMC (DHMC). The key step of this approach is given by Eq. (2.4.7): instead of
taking the determinant of the large N, x N, matrix, the approach requires taking determinants
of a N, x N, matrix that has previously been propagated in imaginary time.* In the context
of ultracold Fermi gases, the method has been applied to the unitary Fermi gas at finite
temperature [151, 152] and the ground state [98] as well as to lower dimensional Fermi gases with
contact interaction in 2D [153, 154] and 1D [78, 155-158] geometries. Additionally, a variant
suitable for the study of entanglement properties has been proposed [159, 160].

Further applications of HMC in a nonrelativistic setting include effective theories in nuclear
physics (see, e.g., [102]), the study of properties of graphene [161-164] and related models [165—
168] as well as carbon nanotubes and the Hubbard model on the hexagonal lattice [169-171].

4An additional benefit of this approach is the applicability of Fourier acceleration in the imaginary time
propagation.
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Figure 4.2: Schematic representation of the analytic continuation from imaginary to real asymme-
tries. (Left) Symbols show the observable as function of the real imbalance as obtained from an
MC run, the solid line represents a fourth order polynomial fit along with a confidence interval.
(Right) Analytically continued function along with the propagated confidence interval. The
analytic continuation causes the error to blow up.

4.3.1 Imaginary asymmetries: iHMC

The HMC algorithm, although powerful, is not capable of treating imbalanced Fermi systems due
to the occurrence of a sign problem. Here, an extension of the method to imaginary asymmetries
is introduced, which again allows for efficient sampling. To distinguish from the symmetric
counterpart, we shall refer to this strategy as iHMC.

To discuss the iHMC approach, we consider mass-imbalanced two-component fermionic sys-
tems. In this case, the mass is flavor-dependent which causes the determinants to be unequal
and Eq. (3.3.5) no longer applies. An elegant way to circumvent this issue is to consider complex
particle masses and introduce the imbalance as

my = mg + idm (4.3.4)

m; = mg — idm.

In this case, the masses are complex conjugates of each other, which translates to the transfer
matrices defined in Eq. (2.4.5):

K2 k2

2 * *
B, = o= = Xk Tmiiom) = (ezk 2<m45m~,> = (e k 2’"¢) = (B))". (4.3.6)
This, in turn, allows us to write the probability measure as the absolute square of the determinants
Plg) = = |det M}[* = L |det M2 [” (4.3.7)
- Z o2 ¢l s

which is a positive semidefinite quantity by definition and may be sampled by the HMC algorithm
(or, in fact, any other suitable MC implementation).

The above procedure allows for a simulation of mass-imbalanced fermions with imaginary
asymmetry. For physical insight, however, it would be nice to know the results for real mass
imbalances. This is achieved by computing an observable O(idm) as a function of the imaginary
imbalance and subsequently performing an analytic continuation to the real line. Practically,
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this is achieved by performing either a polynomial fit or a Padé approximant for O(idm) and
subsequently setting dm — —idm (this is depicted in Fig. 4.2). Strictly speaking, such an approach
is only permissible if the partition function is an analytic function of the mass imbalance dm,
which is challenging to show in practice. For analytic insights on this procedure we refer to [172,
173].

It is important to note that this procedure constitutes a fully nonperturbative approach. The
systematic uncertainties are equivalent to the determinantal MC algorithm (discretization of
spacetime and finite system size) and are fully controllable by definition. The dependence on
the analytic continuation, however, poses certain limitations and, as will be discussed in the
later chapters of this thesis, causes the method to break down at very large imbalances. Another
drawback of the method is the necessity to compute observables for a multitude of parameter
values, as only then is an analytic continuation of numerical results possible at all. Compared to
the direct evaluation at a single given value of the imbalance parameter, this introduces some
extra computational effort.

In this thesis, we exploit the above procedure to study the ground state of mass imbalanced
fermions in 1D. Technically, the approach can be extended to mass imbalanced systems at finite
temperature, however, this is not pursued in this work. At finite temperature, i.e., in the grand
canonical ensemble, it is even possible to formulate the approach for imaginary mismatch of
chemical potentials. In fact, this marks the origin of the above procedure which can be traced back
to a study of the 2D Hubbard model [174]. The strategy was also exploited in the lattice QCD
community to circumvent a sign problem introduced with a finite real chemical potential [175, 176]
and was later also proposed for nonrelativistic spin-polarized Fermi gases [172]. Finally, the iHMC
method was applied to study the mass-imbalanced unitary Fermi gas in the ground state [63] as
well as mass-balanced but spin-imbalanced 1D Fermi gases at finite temperature [177].

4.4 Stochastic quantization

Stochastic quantization is an intuitive tool to understand the quantization of field theories. The
approach was initially proposed in the early 1980s by Parisi and Wu [137] and relies on the
connection between Euclidean field theories and statistical systems coupled to an external heat
reservoir.” The idea has led to major success in the study of quantum field theories in a variety
of settings. Some of the early applications, as well as an educational overview of the approach,
may be found in the famous review by Damgaard and Hiiffel [180)].

We may conceptualize the idea by considering the partition function of a given Euclidean field
theory as a path integral:

Z = /D¢ e Sl = /ZDQS P[¢), (4.4.1)

where the second equality defines the (unnormalized) probability measure of the field ¢. The
coupling to the heat reservoir can be understood by introducing a fictitious time ¢, in which
the Euclidean field ¢ evolves under the influence of a randomly fluctuating force. This random
force, referred to as the noise field or simply the noise, emulates thermal fluctuations stemming

5Stochastic quantization can also be formulated for real-time theories (i.e., in Minkowski metric), however, we
only consider the case of Euclidean field theories in this work. For recent applications see, e.g., [178, 179].
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from the heat bath. In the long-time limit, the system equilibrates with the heat bath whose
temperature is set by the amplitude of the fluctuations. The fictitious time evolution of the real
field ¢ is then described by a stochastic differential equation, namely the Langevin equation:%

%(t) = —M +n (4.4.2)
ot 0

This equation defines a random process for the variable ¢ = ¢(Z,7) and may be interpreted as
a (continuous) random walk in the configuration space of ¢. The first term on the right hand
side is called the drift term, in analogy to the considerations of Section 4.1. In the literature,
this term is also referred to as the classical flow of the theory, as it constitutes the deterministic
part of the time-propagation of the field. The second term represents the fluctuating force and is
given by a white-noise with the properties

(n(7))
(n(m)n(7"))

=0, (4.4.3a)
=26(t—1"). (4.4.3b)
The key ingredient of stochastic quantization is now the observation that the equilibrium
distribution (if it exists) of the d + 1 dimensional random process in Eq. (4.4.2) corresponds
to the probability measure in the path integral Eq. (4.4.1), associated with a d-dimensional
Euclidean field theory. The “extra” dimension is simply the fictitious time t.

It is instructive to consider the above stochastic differential equation without the noise term.
In that case, Eq. (4.4.2) reduces to a deterministic differential equation and its form is nothing
but that of a gradient descent. Starting out at a random (non-pathological) state, this implies
that the solution will converge to a stationary point of the action, which is the “mean-field” or
classical solution. The simple interpretation of the noise term is that it represents quantum
fluctuations around this classical solution.” In order to reproduce the correct physics, we have to
“add the correct amount of fluctuations” which is set by the Fluctuation-Dissipation theorem.
Thus, stochastic quantization can be viewed as a very explicit form of quantization.

Time-ordered realizations of the field ¢, which have been obtained by a fictitious time evolution
of Eq. (4.4.2), are called solutions of the Langevin equation. We shall denote these as gbn(t),
where the subscript 7 highlights the dependence on the specific noise realization. Fig. 4.3
depicts a schematic representation of these solutions. Mapped to our lattice problem discussed
in Section 2.3, this implies that we obtain a sequence of auxiliary field configurations. For a
given point in the fictitious time evolution of the fields, we may write the expectation value of an
observable as the average over all possible realizations of the noise:

(Olg, (D)) = /dn Pln, t]0[¢,(1)], (4.4.4)

where P[n,t] defines the distribution of the noise that has to obey Eq. (4.4.3). In the limit of
large Langevin time, the random process reaches its equilibrium distribution, and as shown
below, it holds that the expectation values of the Euclidean field theory correspond to the ones

SFor convenience, we do not explicitly write the arguments of the field ¢ = ¢(7,Z) in the following discussion.
"Essentially, the thermal fluctuations from the fictitious heat bath are mapped to quantum fluctuations of a
Euclidean field theory.
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Figure 4.3: Schematic representation of multiple solutions of the Langevin equation in Eq. (4.4.2).
The plot shows three different realizations that converge to the steady state (marked by fluc-
tuations about a plateau) after the thermalization time has elapsed (indicated by the shaded
area).

over the noise correlations:

=i . 4.4.
(0) = 1im (0[6, (1)) (4.4.5)
In practice, however, it may be costly to obtain a large number of solutions ¢n(t) at sufficiently
large t. Conveniently, once the steady state of the random process is reached, we may obtain
equivalent expectation values by performing a fictitious-time over a single trajectory

1

)~ 7 / " 0lg, (1), (4.4.6)

th

where t,; reflects the equilibration time that is needed to approach the stationary probability
distribution. This so-called thermalization time is indicated by the shaded area in Fig. 4.3.

4.4.1 Justification of stochastic quantization

Having layed out the conceptual groundwork of stochastic quantization, we now justify the
approach by showing that the equilibrium distribution of the random process Eq. (4.4.2) is indeed
the desired probability measure of our path integral. To investigate this issue, we lean on the
discussion in [181] (a more formal justification may be found in, e.g., [182]).

We start by rewriting the expectation value (O) as an functional integral over the solutions of
the random process:

<m%wb—/@¢m¢mwm (4.4.7)

where P[¢,t] defines the time-dependent distribution function of the field ¢. In other words, we
have traded an integral over all noise configurations for a functional integral over all realizations
of the field ¢(t) weighted with the appropriate factor P|¢, t].
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To study the fictitious time-dependence behavior of the probability measure, we may consider
the fictitious-time derivative

d{0[,()) _ dP[o, 1]
dt_/D(b " Ol[¢], (4.4.8)

where we have used that only the probability measure carries a dependence on the Langevin
time.
Alternatively, we may perform the same fictitious-time derivative by expanding the observable to
second order in its ¢ dependence®

_ 60[¢]

dO[¢] = deb +

1620]9]
2 642

(dg)2. (4.4.9)

To obtain the field increment de, it is necessary to rewrite Eq. (4.4.2) in a discrete version, which
is achieved by simply integrating both sides over the time interval di:

t+dt tdt t+dt
/ ar 2000 _ / dr K[¢] + / dr n(r) (4.4.10)
t or t t
where K[¢] = —5‘59—([;)] denotes the drift term. The left-hand side of the expression is readily

evaluated and is given by the increment of the field d¢ = ¢(t + dt) — ¢(¢). Furthermore, the
second integral is trivial, since the drift does not explicitly depend on the Langevin time ¢. For
the proper definition of the first term on the right-hand side, however, some care has to be taken.
Formally, the approximating sum of the integral is not uniquely defined and could depend on
the intermediate points chosen for the partition.” We refrain from a discussion of the technical
subtleties at this point and refer to [180] for a treatment of the issue. Pragmatically assuming
that the integral can be suitably defined, we arrive at the discrete Langevin equation

d¢ = K[¢]|dt + dw, (4.4.11)
where dw denotes the so-called Wiener increment with the property
t+dt t+dt
(dw?) :/ dT/ dr’ (n(m)n(r")) = 2dt. (4.4.12)
t t

We can now substitute Eq. (4.4.11) into Eq. (4.4.9) to obtain

d0[¢] = 5(5)? (K[6]dt + dw) + ;5253[f] (K[¢)dt + dw)® (4.4.13a)
_ ‘sgd[j“mgﬁ]dt + (‘“;}f] L0 52[2¢]K[¢]dt) dwt5° Sf] du?. (4.4.13b)

Note that terms of order dt? have been discarded in the last equality, which corresponds to

8Note that the expansion to second order is required since ¢ is no ordinary variable but a random process and
thus has to be treated with stochastic calculus [180].

9This distinguishes the Ito calculus from the Stratonovich calculus which are the two most commonly employed
prescriptions to deal with integrals of this type.
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Euler-Maruyama discretization [183]. The expectation value of the fictitious-time derivative then

becomes
dO d (O
< [jz(t>]> _ 4 [i;v(tm (4.4.14a)
_ <_5C;E)¢] 5?([;5] + 563[2¢]> = <LRO>, (4.4.14b)

where Eq. (4.4.12) was used, as well as the fact that terms proportional to dw vanish because of
the vanishing expectation of the Wiener increment (dw) = 0. Eq. (4.4.14b) implicitly defines
the so-called Langevin operator!®

o

56

We may again write this in terms of the time-dependent probability measure defined in Eq. (4.4.7):

Ly = /ded:U (5 + K[¢]>

5 (4.4.15)

d <O[f§<t>]> _ / Do (_aa[f} 5§<[f] N 6252[2@) Plo.1] (4.4.161)
= /Q)¢ O[] <_(;;5§([;ﬂ + 5(;2> P, t]. (4.4.16b)

The last line in the above expression was obtained through partial integration and the assumption
of vanishing boundary terms, or at least a sufficiently fast decay in the case of a noncompact
integration region. The assumption is in fact crucial and will be subject to further discussion
below.

Finally, we compare the expressions in Eq. (4.4.8) and Eq. (4.4.16) to arrive at the Fokker-
Planck (FP) equation for the probability distribution P|[¢,t]:

%P[@ t] = LE Pl, t]. (4.4.17)

The operator Lg, referred to as the FP operator (or FP Hamiltonian), represents the formal
adjoint of Eq. (4.4.15):

0 (0
LY = [ drd? —(——K ) 4.4.18
L= [antte (5 - Ko (44.18)
The procedure so far has led us to the FP equation for the probability distribution P[¢,t]. It is
now straightforward to check whether the probability measure of the path integral is indeed a
stationary distribution of the random process: we simply plug P[¢], as defined in Eq. (4.4.1),
into Eq. (4.4.17) to obtain

LTP[g] = / drddz 5‘; (5‘; _ K[¢]> Plo) (4.4.19a)

10The integral over spacetime in Eq. (4.4.15) should merely be viewed as a shorthand notation and essentially
reflects a sum over all possible degrees of freedom.
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_ / drdts {6‘; (ibesw) _Q)(Kw}ew)} (4.4.19b)
= /dedx {5‘; (_‘Siye—s[@) — 5‘; (K[¢]e—5[¢])} =0, (4.4.19¢)

as it should be for the stationary distribution. Note that this “proof of existence” alone does not
guarantee the uniqueness of the stationary distribution. The latter can be achieved by performing
a similarity transformation of P[¢] which leads to a FP equation with a positive semidefinite
operator with a unique lowest eigenstate. A version of such a proof can be found in [82, 181].
The above procedure shows that the random process in Eq. (4.4.2) produces field configurations‘¢
distributed according to the Boltzmann weight of our path integral. Hence, we have arrived at
an equivalent representation of a given theory that is valid for real fields ¢.

4.4.2 Stochastic quantization as a numerical method

So far, we have discussed the idea of stochastic quantization as a general tool to quantize
Euclidean field theories. Here, we want to exploit these considerations to construct an efficient
numerical method, dubbed real Langevin (RL).

We start by considering the properties of the noise term in Eq. (4.4.3) which reveal the Markov
nature of the random process through the d-correlation of noise values at different times. Therefore,
we may connect the discrete Langevin equation (4.4.11) by recasting it into the general form
proposed in Eq. (3.2.7):

¢ = oM 4 Ko, |At + V2ALn. (4.4.20)

Here, the noise term 7 is written as a random variable with vanishing mean and (n?) = 1,
in accordance with the properties proposed above. In principle, it is possible to choose any
distribution that satisfies these constraints, however, the predominant choice for 7 is a standard
Gaussian.!!

The update step (corresponding to the blue box in Fig. 3.2) can be summarized as follows:
1. Evaluate the drift term for the sample ¢(™ and multiply it by the integration step At.
2. Draw a random vector ™) with the same size as the field.
3. Add the drift and the random vector to ¢{™ to obtain the next step in the sequence.

As opposed to the Metropolis-based algorithms discussed above, no accept-reject step is necessary
to obtain a new state. As a consequence, we do not have to calculate the weight of a given
configuration (which may be a challenging task) but “only” the drift term. This freedom allows
us later to extend the method to the more general case of complex actions, as discussed below.
By virtue of the discussion in the previous section, we know that in the long-time limit the
samples ¢(™ follow the desired probability distribution of the path integral. Therefore, the
strategy to evaluate the random sequence is identical to the one in regular Monte Carlo approaches:
after starting out from a randomly produced configuration, we let the sampling process equilibrate
for a certain thermalization time (typically a few multiples of the autocorrelation time) before we

1 Overly broad distributions, for instance some power law, could lead to numerically inconvenient behavior due
to excessive fluctuations and therefore longer convergence time.
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start to collect samples. The measurement of observables and their statistical evaluation follows
the procedure discussed in Section 3.2.

Systematic bias: time-step dependence & higher order integration

It is important to note that the statistical uncertainty is not the only source of error, as we have
introduced a systematic bias through the discretization of the Langevin equation in Eq. (4.4.20).
This raises the necessity to extrapolate results to the limit of At — 0 or, alternatively, to resort
to sufficiently small step sizes to suppress the systematic errors below an acceptable threshold.
The standard form of discretization in Eq. (4.4.20) corresponds to Euler-Maruyama integration
and leads to a linear dependence on the integration step At. A naive guess to improve this scaling
would be to increase the order of numerical integration of the drift term, e.g. by a Runge-Kutta
scheme of higher order, and subsequently add in the noise. However, such a strategy does not
alter the linear dependence on the step size, although it comes at a considerably higher numerical
cost due to repeated evaluation of the drift term.

To actually improve the scaling, higher-order discretizations taking into account the noise term
have been investigated in the literature. A convenient explicit algorithm, proposed in [184], takes
the following form:

A = o) ¢ % K™, (4.4.21a)
3VAt 1
() — my . VAL 1
T (aav ] (1.421b)
D) — gl 4 % (KTx™] + 2K[9™)]) + VAL, (4.4.21¢)

which leads to three evaluations of the drift term. The algorithm relies on two independent
noise fields n and ¢ which both satisfy the condition (4.4.3). It was shown analytically that the
algorithm leads to corrections of the order @(At?) for a single degree of freedom and @(At2) for
coupled systems. In a later study, the above prescription was extended to the complex case [185]
where the same scaling was observed. In fact, the prefactor of the polynomial was observed to be
tiny, at least for the models under study, such that the dependence on the integration step is
almost entirely suppressed. We revisit this topic in a concrete numerical setting in Section 5.6.
Other integration schemes have been investigated in the past [186-188]. Within the models
addressed with a variant of an improved integration scheme, success was achieved in reducing
computational cost at equal systematic bias in terms of At as well as to eliminate finite-step
dependence altogether within the statistical uncertainty. The majority of stochastic quantization
studies, however, still rely on the linear discretization as it is often sufficient to get reasonable
results at modest computational effort. Unless otherwise noted, we shall use the linear integration
scheme in this thesis.

4.4.3 Toy problem I: simple integrals as 0+0 dimensional field theory

In order to illustrate the RL method in a concrete numerical setting, we consider a simple integral
as a toy problem for a 0 4 0-dimensional field theory. In other words, the field ¢ depends on
neither space nor time. This purely serves an illustrative purpose - we are not interested in a
detailed study of the specific model at hand but rather aim to investigate the behavior of the RL
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Figure 4.4: (a) Action as a function of the real variable ¢. (b) Probability distribution 5%l
(dashed lines) along with the sampled histogram (bins). (¢) Measured values of ¢ as a function of
Langevin time. (d) Running average of (¢) compared to the exact solution (orange dashed line)
(e) Running average of (¢?) compared to the exact solution (orange dashed line). The shaded
areas correspond to the statistical uncertainty after the full run, i.e, ¢ = 10* for the present
example.
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method in a straightforward case. Of course, it is highly inefficient to use RL for the solution
of this simple problem, however, the section serves as a basic example of an application of the
method. Furthermore, conclusions that generalize to more involved problems can be drawn by
this simple analysis.

We consider the action

A
S(¢) = gch + 5o (4.4.22)

with real couplings p and A. In the spirit of a real field theory, we will keep A positive and thus
end up with two distinct scenarios: one in which p > 0 (single-well anharmonic potential) and
one in which p < 0 (double-well potential).

We readily derive the discrete Langevin equation for our toy problem, according to Eq. (4.4.20):

D) — glm) _ (w(”) n 2<¢<n>)3) At + V2At7, (4.4.23)

where 71 denotes a standard Gaussian white noise. In principle, this is everything needed to
calculate expectation values of the form Eq. (4.4.6).

In Fig. 4.4, a detailed analysis of two simulations at fixed A = 0.4 and pu = +1 is presented
(left and right columns, respectively). The second row from the top shows the histograms of
the sampled field values, which should follow the distribution e~5(®) (exact solution shown with
dashed lines) in the limit of large Langevin time ¢ — co. While in the single-well system (left
column) this is the case to a good approximation, it is apparent that the double-well scenario still
suffers from a slight asymmetry. This can occur when the random process gets “stuck” in an area
of configuration space and does not easily move to another high-probability area of configuration
space (i.e. the other well).

This behavior can be further elucidated by the measured field values as a function of ¢, depicted
in row (c): on the left we essentially see white noise centered around the expected value of 0,
whereas on the right we observe several correlated plateaus, corresponding to either the negative
or the positive well. As a consequence, we face a signal-to-noise issue in the calculation of
the expectation value (¢), which is shown in row (d): when the trajectory is located in the
left (right) well, the currently sampled values are negative (positive) such that adding these
values to the estimate of the expectation value causes it to shift towards negative (positive)
values. This leads to cancellations visible as zig-zag movements of the running average. Moreover,
the autocorrelation between subsequent samples increases and with it the statistical error, as
indicated by the large uncertainty band (shaded area in the plot). Due to the symmetry of the
problem, however, the running average for (¢?) converges to the exact value relatively smoothly
in both cases. Thus, by investigating only one observable, no profound statements can be made
about a different one. While the autocorrelation of observable A may be small and its statistical
errors under control, observable B could display erratic behavior and suffer from extremely slow
convergence.

By tuning the parameters of the model, one could even study the extreme case where the two
wells are separated by a barrier that cannot be surmounted by the random walk (signaling a
breakdown of ergodicity). In such a situation, the expectation value (¢) would indicate that the
discrete symmetry is broken, which certainly is not a physical result for our model. This reflects
the problem of meta-stability of any Markov chain method, which is often very hard to detect a
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Figure 4.5: Real Langevin results for the simulation parameters 4 = 1, A = 0.4 and a total
Langevin-time of 10%. (Left) Symbols reflect RL results for (¢?) along with the statistical
errorbars as a function of integration time-step At (note that the x-axis features a log-scale). The
solid line represents a linear extrapolation to the limit At — 0, along with the 95% confidence
band (shaded area). The horizontal dashed line shows the exact result. (Right) Integrated
autocorrelation time of the observable (¢?) in units of samples as a function of At on a double-
logarithmic scale. The solid line shows a power-law fit with exponent ~ —1, along with the 95%
confidence band (shaded area).

priori. Generally, careful analysis of this issue is necessary in real simulations, for example by
sweeping numerical parameters in a systematic manner.

As remarked above, the RL method suffers from a systematic bias that enters through the finite
integration step At. We analyze the behavior of the expectation value (¢?) in the left panel
of Fig. 4.5. Indeed, we observe a systematic linear behavior of (¢?), which is expected due to
the order of the Langevin equation. The plot also features a linear extrapolation to the limit
At — 0, which is in excellent agreement with the exact result (dashed line).

Finally, by inspecting the Langevin equation 4.4.23, it becomes apparent that the integrated

autocorrelation time

¢ between samples should be inversely proportional to the Langevin

time-step At. Stated differently, statistically independent samples will be more expensive as
the integration step decreases. On the other hand, a coarser integration step yields a larger
systematic error and thus a balance must be found where both the computational effort as well
as the precision are within reasonable bounds. This behavior is illustrated in the right panel
of Fig. 4.5, where we show the dependence of 7, (for the observable (¢#?)) on the integration
step size At on a double-logarithmic scale. A power-law fit reveals that 7, scales as At™! for
sufficiently small integration steps. For At = 0.3, subsequent samples are essentially uncorrelated.

For this reason, a precise estimate of 7;,, which is smaller than 1 in this parameter range, is

nt»

challenging, and the values deviate from the exact scaling due to noise.

4.5 The complex Langevin method

The above discussion shows that stochastic quantization is a valid description for theories with
real actions. Sometimes, however, we are required to consider the more general case of complex
actions - specifically in light of the sign problem: whenever we encounter negative contributions
to the partition sum, we know that this can only originate from a complex valued action in
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the exponent (after all, a real quantity in the exponent always leads to something positive).
The occurrence of a complex action has serious implications and may spoil the construction
of an efficient numerical method for such theories. Nevertheless, there are certain models that
can efficiently be treated by extending the idea of real Langevin to the more general complex
Langevin method. Here, we first explore this matter from a practical viewpoint and later discuss
its formal aspects along with possible shortcomings of such a treatment.

4.5.1 A practical guide to complex Langevin

Before bothering with the formal background of the approach, we take the practical route to
the CL method. We start by recognizing that the drift term is in general a complex quantity if
the action itself is complex. In this case, a step in the Markov process according to Eq. (4.4.20)
results in an imaginary contribution to the field value ¢. A pragmatic solution is to simply
extend the manifold of the field ¢ to the complex plane by setting

¢ = op +iop, (4.5.1)

which implies the analytic continuation

S(p] — Slog +ig;]. (4.5.2)

Naturally, this step is only allowed if the action is a holomorphic function of ¢. As a consequence
of the complexification, we obtain a system of coupled stochastic differential equations which we
may write in discrete form:

() — K p[o™]At + /NpAt g, (4.5.3a)
MY = K [¢™]AL + /N At n;. (4.5.3b)

As before, the noise terms 7, and 7; are standard Gaussians centered around zero and represent
two independent Wiener processes. However, in order to satisfy the dissipation-fluctuation
theorem, the noise amplitudes are related through

Np—N;=1. (4.5.4)

While N; # 0 is required to solve the associated Fokker-Planck equation, there is no such
restriction when solving the above Langevin equations. In practice, it is typical to use N; =0 as
this was shown to be numerically most favorable [189].

The respective drift terms in Eq. (4.5.35) are given by the real and imaginary parts of the
functional derivative of the complex action

Kglp™] = —Red‘gf]’ (4.5.5a)
p=o(™)

K [¢p™] = —Imw‘ (4.5.5b)
p=gm)

0¢



4.5 THE COMPLEX LANGEVIN METHOD

57

0.9 T T T T T
= = exact 250 = autocorrelation A
linear fit 5 exponential fit
# complex Langevin 2001 % -
0.88 | 5‘ [ ]
— } } 20l % .
S
e P + + +- +_ ﬁ =
i s B S -
+ 50 LG .
w u
| |
0.84 I I 0 I I I I I I
1072 107! 0 0.1 0.2 0.3 0.4 0.5
At At

Figure 4.6: CL analysis for the action Eq. (4.4.22) with © = 1.0 and A = 0.4, corresponding to the
single well potential. (Left) Integration step dependence of the second moment (¢?) as obtained
with CL (symbols). The solid line represents a linear fit to the data in order to extrapolate to
At — 0 and the dashed line shows the exact result. (Right) Step dependence of the integrated
autocorrelation time for (¢?). The solid line represents an exponential fit. Shaded areas represent
a 95% uncertainty bands of the corresponding fits.

and are responsible for the coupling of the two stochastic differential equations. As for all
algorithms discussed in this section, it is the computationally most costly task to evaluate these
expressions. However, no severe additional cost was introduced through the complex fields.
From a computational viewpoint the change from real to complex Langevin is indeed marginal:
instead of performing the random walk on the real line we have to randomly explore the complex
plane. Everything else stays exactly as in the real case. But we have to be careful: This somewhat
leisurely look at the method would imply a general solution to the sign problem. It cannot
be stressed enough that this is not the case, and sure enough, the sign problem will return in
some other way. However, before turning to these subtleties, we discuss the approach with an
illustrative example.

4.5.2 Toy problem II: a complex toy problem

In order to see the CL machinery at work, we build on the toy problem in Section 4.4.3. As
remarked above, from a computational standpoint, CL is largely just the Langevin process of
stochastic quantization with complex variables.

A straightforward way to construct a complex field theory would be to consider complex-valued
couplings p and A in Eq. (4.4.22), which in fact has been considered before, see, e.g., [181].
However, this would amount to solving a different theory as the couplings necessarily take
on different values than in the real case. For an alternative treatment, we may rewrite the
above problem with a suitable Hubbard-Stratonovich transformation which merely amounts to a
different representation of the same “physical” scenario. Moreover, this is very much in the spirit
of our approach to fermionic theories, where we use a HS transform to construct a path integral.
We start by inserting a suitable factor of 1 into the partition function in terms of an auxiliary
variable o:

Z= / dp eS¢ (4.5.6a)

—00
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A o A 2 & B2 A 4
=4/ —340 —5¢ =359
\/ Y /_OO do e /_ do e (4.5.6b)

[ee]

A shift 0 — o + i¢? allows us to write

Z = \/;/ do-/ d¢ ef¢2(%+ii\;)fﬁ02 (457)

and subsequently to integrate out the dependence on the old field ¢ (note that this is only

possible in the case Re[u] > 0). Ultimately, we obtain the “bosonized” version

zz/ doe 217713 108 135 0ixs z/ doeSe(@), (4.5.8)

— —0o0
where we defined the “bozonized action”

Sp(o) = i02 — 1log A

—_ 4.5.9
24 2 °12u+ 2iXo’ ( )

which is, by construction, a complex quantity. According to the discussion in the previous section
we can still evaluate expectation values stochastically by using the complex Langevin equation

(n+1) _ ) _ A i A VAL
op =o0p —AtRe [120 + 112,u TV + V2Atn, (4.5.10a)
() _ o) AT [ Lo 4 N 4.5.10b
oy o m [120 +112u+21)\0(”) . (4.5.10b)

To compute the expectation value of (¢?) we have to express it in terms of the new field o:

6u +iXo

(¢%) = <6>U (4.5.11)

where the subscript ¢ denotes averaging over different realizations of o.

From this point on, we proceed exactly as in the real case, with the exception that we now have
to deal with a complex variable o. The qualitative dependence of the numerical results on the
integration step size At should still be linear. This is indeed the case, as apparent from the left
panel of Fig. 4.6, where we show CL results for the model given by Eq. (4.4.22) with parameters
p=1.0 and A = 0.4. We observe that CL correctly reproduces the exact result. Interestingly,
the CL values show an extremely mild dependence on the integration step, which is likely a
consequence of the specific representation and in any way should not be interpreted as a general
result. Additionally, we show the dependence of the integrated autocorrelation time as a function
of the integration step in the right panel of Fig. 4.6. As in the real case, the autocorrelation
time increases with smaller timestep. Interestingly, though, in contrast to the real case, the
correlation between samples seems to exponentially grow with decreasing At. Regardless of the
actual functional form, the autocorrelation time at large At seems to be slightly higher for this
specific model than for RL.

Besides the actual results of the calculation, it is instructive to investigate the behavior of the
drift term. In Fig. 4.7 we show the so-called classical flow pattern, which corresponds to the
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Figure 4.7: Classical flow diagram with attractive fixed points (green dots) and the pole associated
with the branch point of the action (red cross). The gray dashed line represents the domain of
the equilibrium probability distribution.

direction of the drift in the complex plane. We can immediately identify an attractive fixed point,
i.e. a point in the complex plane with stationary action and a drift that is pointing towards
it from any direction (lower green dot). It is conceivable that such a point is responsible for a
steady state in the random process, as it will pull the field values towards it. Although the noise
term will cause the field to fluctuate around this point, the field value can only rarely escape such
a point. In fact, the existence of a sufficiently strong attractive fixed point has been shown to be
necessary condition for the existence of an equilibrium distribution of the Langevin process [190,
191]. Luckily, this appears to be the case for the systems of interest in this thesis.

The situation might change drastically if poles are encountered inside the domain of the distribu-
tion. This could lead to a breakdown of ergodicity, due to a breakdown of holomorphicity of the
action (the issue is revisited below). In the model considered here, we can indeed find a pole
at the point o = 6%, which corresponds to the branch point of the action (marked by the red
cross). At first glance, this looks very “dangerous” as there is also another attractive stationary
point (upper green dot) in the vicinity of the pole. Generally, this could suggest faulty behavior.
However, the imaginary part of the drift points away from the pole. Thus, even if a trajectory
approaches this area of configuration space, fluctuations (which only occur in the real direction)
will “kick the process back” into a stable trajectory that decays towards the attractive fixed
point below. In equilibrium, the distribution will therefore be confined to the gray dashed line
far away from the pole, ensuring correct behavior (i.e. it is approximately shifted from the real
axis by a constant offset).

In Fig. 4.8 we show the Langevin time evolution of an actual random process as it was sampled
with an integration step of At = 0.01. In the left panel we show the sampled field values o in
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Figure 4.8: Sampling process in the complex plane. The sampled values of the auxiliary field o
are shown on the left. The corresponding values of the complex measure are shown in the right
panel. The shaded areas represent areas with positive and negative real parts of o (orange and
blue, respectively) and map onto each other. The dots outside the shaded areas are early samples
in the stochastic series which then converges to the attractive fixed point (green dot).

the complex plane. The process starts at a random point (top left in the plot), somewhat far
away from the lower attractive fixed point (green dot). After a while, the imaginary part relaxes
towards the attractor and the (real) noise causes the field value to fluctuate around it. This
indeed corresponds to sampling the complex distribution defined in Eq. (4.5.8) as is shown in
the right panel of Fig. 4.8. Shaded areas correspond to regions of positive (orange) and negative
(blue) values of Re[o]. While these areas are rectangular in the o-plane (left plot), they are
deformed in the half-circles in the complex plane of p(c). The attractive fixed point sits exactly
at Re[o] = 0 such that the trajectories in the right panel pass this point when switching from
one domain to the other.

4,5.3 Acloser look on complex measures & boundary terms

The above example shows that there is at least one case in which a complexified random walk
leads to correct answers. To further formalize the approach, we take a closer look into the
behavior of the various probability distributions to gain insights as to when the method is
expected to deliver accurate results.

We start by writing the complex probability density of the physical expectation values given by

plor] = %e_s[‘%]. (4.5.12)

Note that this function defines a map from the real line (denoted by ¢z) to the complex plane.
The expectation value of a given observable is then written as

)= / D Ol ol 1], (4.5.13)

where the average with respect to p[¢, t] is denoted in the subscript. Analogously to the derivation
in Section 4.4.1, the fictitious time evolution can be obtained by a temporal differentiation of the
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expectation values, which leads to the Fokker-Planck equation

d
&P[@RJ] = Ly plor. 1] (4.5.14)
with the FP operator
1) 1) 0S[dg]
L = /ded:v ( + £ ) : 4.5.15
0 00r \0¢r  09p ( )

To investigate the actually sampled probability density, we recall that we extended the random
walk to the complex plane. Thus, the Langevin process in Eq. (4.5.35) will sample field values
according to the density

1 .
Plog, o1 = 5o S0ntior (4.5.16)

with the time-dependent expectation values

(O) iy = / DDy Ols b1 Pl b1, 1) (45.17)

Unlike the complex distribution p[¢], the above probability measure maps from the complex
plane to the set of real numbers. Since Pl¢p, ¢, t] is a positive semidefinite function by
construction, it is a well-defined probability measure. Again, temporal differentiation of the
above expression yields the associated Fokker-Planck equation

d
ap[(ﬁR?d)I?t] = LTP[¢R7¢I7t] (4518)

with yet another FP operator:

§ § ) §
LT = /ded:E {5% (NRMR - KR> + 56, (NIMI - KI> } (4.5.19)

The central question is whether the expectation values obtained by this complexified random
walk agree with the ones from the original, but complex, density p[¢g,t]. Stated differently, it is
necessary to show that

{0ty = (O)pe)- (4.5.20)

This equality should hold for all times, if the initial conditions of the two distributions agree. It
is not obvious a priori whether this equation holds. In fact, it is not even clear that the process
would converge and if it does, whether it converges to the correct answer. Indeed, following
the steps outlined in Section 4.4.1 for the case of real Langevin, one finds that the resulting FP
operator is neither self-adjoint nor positive semidefinite, such that the proof of convergence to
the desired probability distribution is spoiled. In [189], some of the mathematical questions are
investigated, however, general results remain scarce. Numerical evidence, on the other hand,
points to the existence of a stationary distribution as well as correct answers for some models
but faulty behavior for others.
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In order to investigate the validity of Eq. (4.5.20) we closely follow the strategy devised in
Refs. [189, 192]. The key step is to define an interpolating function

F(t.7) = [ DonDs; Ol g+ 6y, 1P, 1.t — ] (45.21)
which corresponds to the limits

It is straightforward to verify Eq. (4.5.22a) by simply evaluating Eq. (4.5.21) at 7 = 0, which

then yields an expression identical to the definition in Eq. (4.5.17). On the other hand, some
work has to be done to show the second limit. First of all, we may choose the initial conditions

Pl¢gr, #1,0] = p[pr,0]6(d; — Xx)- (4.5.23)

without loss of generality. This corresponds to an initial distribution that varies in the real
direction but is confined to a certain point on the imaginary axis. Inserting the initial condition
into Eq. (4.5.21) allows us to integrate over the imaginary direction:

F(t.6) = [ DonDo; Ol6p + 1614 Plor, 61,0 (4.5.240)
= / Dép Oldg +ix.t] plér, 0] (4.5.24b)
- /D¢R eLOlpp +ix, 0] p[dg, 0] (4.5.24c)
— [ D5 Ol +ix.01¢" ol 0 (4.5.240)
— [ D05 Olér + 1,0}l t] = (O) 1 (4.5.24¢)

For the third equality, we have exploited the fictitious-time evolution of the observable, in
accordance with Eq. (4.4.14):

d
0001 = LeOlo. 1), (4.5.25)

where ¢ = ¢p + i¢; is simply the complex field-value such that the associated complex FP
operator reads

Lo = /dedm ((;; + 5‘255]) 5(; (4.5.26)

The formal solution of Eq. (4.5.25) is given by
O[¢,t] = O[¢, 0]etLec. (4.5.27)

Furthermore, we exploit that the operators L, and L act equivalently on holomorphic observables
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due to the Cauchy-Riemann equations and thus may be used interchangeably. The crucial step
in this derivation is given by an integration by parts that shifts the time dependence from the
observable to the probability distribution p[¢y,t]. This allows us to rewrite Eq. (4.5.24d) as
the desired expectation value (O),,) under the assumption that the boundary terms of this
integration vanish.

The above discussion proves that F'(t,7) indeed interpolates between the appropriate limits
(under certain conditions). If the function is independent of 7 altogether, that is, if

d
—F(t =0 4.5.28
ZF(t) =0, (45.28)

it follows that Eq. (4.5.20) holds. Upon performing the temporal differentiation we obtain

SF ) = [ D6nD0r {Plon o1t~ 111000 + 16,7
(4.5.29)

— LTPl¢p, ¢7,t — 7] Ol g + i¢;, T]}7

which can be shown to vanish via integration by parts. Again, this proof operates under the
critical assumption that the boundary terms vanish. Nonvanishing boundary terms are a potential
source of problems within the CL approach as it has been shown that in such a case, the method
sometimes produces spurious results by converging to the wrong limit [193, 194]. This contributed
to the mixed success of CL over the years, as the issue was not thoroughly investigated up
until recently. The requirement of vanishing boundary terms, however, allows us to arrive at
a conclusion to determine whether we may trust the values from a CL calculation [189]. More
precisely, if the product

Plog,¢1,t — 7] Olpg +idy, 7] (4.5.30)

does not decay fast enough towards the boundaries of the integration domain, the formal argument
underlying the complexification of the random process is spoiled. Hence, in this case it cannot
be guaranteed that the expectation values obtained with a complexified random walk converge
to the correct values.

While the condition of fast decay was recognized in [189, 192], the required rate was not
immediately clear. In [195], the above arguments were reviewed by considering a finite step
size in Langevin time. It was then found that integration by parts is valid if the probability
distribution of the drift term falls off faster than any polynomial of the drift value towards large

magnitudes.'?

Criteria for correctness

The preceding discussion clearly shows the requirement for the validity of the CL. method. However,
the time-dependent probability distribution in Eq. (4.5.30) is hard to evaluate in practice. After
all, we are typically interested in the equilibrium distribution to obtain equilibrium expectation

121t is noted that a few technical subtleties with respect to the definitions of the various FP operators have to be
considered. Treating those, however, is beyond the scope of this thesis and it is simply referred to, e.g., Refs. [189,
192] for further details.
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Figure 4.9: Schematic representation of possible pole positions. The shaded area represents
the domain of the equilibrium distribution and red dots indicate nonanalytic points of the
action. (Left) Pole outside the distribution. (Center) Pole at the edge. (Right) Pole inside the
distribution.

values. In [189], the temporal behavior of Eq. (4.5.28) was thoroughly investigated for a few toy
models and it was shown that the fictitious-time dependence is largest at 7 = 0, such that the
knowledge of the time-dependence of the boundary terms is not required. These considerations
culminated in a practical condition for the correctness of a CL simulation:

(LO) = 0. (4.5.31)

Technically, this has to be the case for all observables, which would correspond to an infinite
number of conditions to check. Practically, however, this is not feasible and one may at least
check the above condition for the observables of interest. If it holds, the check constitutes a

strong argument for the validity of the results, whereas a violation renders the results unreliable.

4.5.4 Meromorphic drifts

Up to this point, our discussion of the validity of the CL approach relies on the important
assumption of holomorphic actions. The fermionic theories of interest in this thesis require a
determinant as the probability measure in the path integral, see Eq. (2.4.8). Since we define our
action as

Slg] = e Pl = g~ Indet Mig], (4.5.32)

it is immediately apparent that zeroes of the fermion determinant lead to nonanalytic behavior
of the action and thus require us to revisit the formal arguments presented above. Here, we only
briefly discuss the central aspects in this regard and follow the conclusions of a recent extensive
study of this issue [190].

The problems arise due to the singularities at zeroes of the determinant. The strategy to address
this issue is to consider the integration domain without the pole region, that is, by manually
cutting out a region around the singularity. In other words, we extend the boundary of the
integration domain to include the contour of the region around the pole. The central question is
then similar as before: how does the probability distribution P[¢] behave at the boundary around
the poles? Naively, we could argue that P[¢] has a zero at the pole, and the random process will
therefore never reach this point. As in the discussion above, though, it is not the vanishing of
the probability at the pole but the decay towards it, which triggers correct or incorrect behavior.
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If P[¢] decays only power-like, problematic contributions of these singularities may be observed.
To further understand the implications on the sampled expectation values, three distinct scenarios
have been considered in [190], which are also schematically depicted in Fig. 4.9.

Poles on the outside Naturally, poles outside the region of the equilibrium distribution are
unproblematic, since after some thermalization the influence of the pole will be lost and
expectation values are unbiased. Note that this is also the case for the toy problem discussed
in Section 4.5.2 (visible as the red dot in Fig. 4.7 whereas the equilibrium distribution lies
near the gray dashed line).

Poles at the edge It is essential to monitor the behavior of P[¢] around these points on the edge,
and it has been found that for certain toy problems, such an occurrence could spoil the
correctness [190]. This rules out an earlier explanation for the failure of CL, which rested
on the winding of the process around the singularities [196].

Poles on the inside The main issue related to a pole inside the domain of the equilibrium
distribution is the potential occurrence of bottlenecks, as the probability measure vanishes
directly at the singularity. This, in turn, could lead to wrong expectation values due to a

statistical underrepresentation of some subspace of the configuration space.!?

Unfortunately, analytic insight into the pole structure is limited to simple toy problems. To
investigate if a calculation suffers from the above issues in full-fledged many-body applications,
it is important to closely monitor the sampled probability distribution. In [190], a variety of toy
problems, as well as some high-energy-like models, have been investigated thoroughly in this
regard.

4.5.5 Practical aspects

Aside from the conceptual issues of the CL method, there are some practical shortcomings that
have to be properly addressed in order to obtain stable results. Here, we briefly outline the two
main strategies relevant for this thesis.

Adaptive integration step

An early identified problem of Langevin methods is the appearance of numerically unstable
averages. These so-called runaway solutions are the consequence of uncontrolled excursions of
the random process, specifically in the imaginary direction. The issue is related to the accuracy
of the integration of the drift term and may be conceptualized via the classical flow-diagram: an
accumulated numerical error could push the CL process onto unstable trajectories that diverge
towards large imaginary values. Since these trajectories are only reached through numerical noise,
they do not belong to the dynamics of the problem. As a consequence, the running averages of
the measured observables show unstable behavior and, depending on the frequency of such an
occurrence, may fail to arrive at converged expectation values.

A naive way to address this issue is to use a tiny timestep in order to suppress the accumulation
of numerical noise. However, this approach does not constitute a general solution of the problem.
Additionally, the exploration of configuration space will be much slower which leads to increased

13This problem is related to the issue of meta-stability as remarked already in the discussion of Markov chains
in Section 3.2.
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numerical effort. In [197], instabilities have been cured by introducing an adaptive integration
step. The idea is to rescale the integration step depending on the magnitude of the drift term in
order to avoid problematic regions in the flow diagram. It was shown that such an approach
provides a full solution to the problem of instabilities and has thus become standard in CL
applications.

In this thesis, we apply a strategy along the lines of an algorithm proposed in [197] and simply
rescale the timestep with the maximal value of the drift at every iteration:

Ky

At = Atg—— .
" max;, |[K[o")]]

(4.5.33)

Here, At is the new timestep used for the present update and At is the average or target
timestep. The parameter K, denotes the target drift, whose value may either be set manually
or pre-computed during thermalization. In any case, only the product AtyK, is of importance,
such that in practice K, = 1 (with appropriate units) is a legitimate choice. Note that whenever
we perform an extrapolation At — 0, it is actually the target timestep At that is extrapolated.

The regulator

A separate potential issue of CL simulations, as discussed at length above, is the insufficient
decay of the probability distribution towards infinity. This leads to excursions to remote areas
away from the region of interest and therefore may cause unstable behavior.'* For the systems
relevant in this work, the problem becomes apparent by re-examining the specific form of the
Hubbard-Stratonovich transformation in Eq. (2.4.2a) which is proportional to sin ¢. For real
fields, the decoupling results in a compact integration domain. For complex-valued ¢, on the
other hand, we obtain

sin ¢ = sin ¢ cosh ¢; + icos ¢ sinh ¢y, (4.5.34)

which is unbounded in the imaginary direction and thus could lead to faulty behavior. To prevent
uncontrolled excursions, a harmonic confinement of ¢ was proposed [198], such that the Langevin
equations read

() = K8 At + 26 At + VoA, (4.5.35a)
(4D — J [ AL + 26 At (4.5.35b)

Here, £ is referred to as the regulator strength that keeps ¢ from wandering off. The modified
Langevin equations then correspond to an action with an additional mass-like term

S[¢] — S[é] + /deda: Eo(z, 7), (4.5.36)

4 Note that the symptoms of this issue are similar to those of numerical instabilities. However, these trajectories
belong to the dynamics of the physical problem and are not of accidental nature, in contrast to the ones that are
produced through numerical noise.
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which introduces a systematic bias in the computed expectation values. Therefore, it is necessary
to check that the results are either insensitive to the regulator strength £ or, equivalently, an
extrapolation £ — 0 has to be performed. Stated differently, the idea is to simulate a series of
well-behaved systems in order to extrapolate to the physically correct point.

It was observed that a regulator is a requirement to simulate nonrelativistic fermions via CL in a
stable manner [78, 79, 198]. This is certainly true for the HS transform defined in Eq. (2.4.2a).
However, other HS transforms exist which are self-regulated in the sense that a mass-like term
naturally appears. To our knowledge, this avenue has not yet been pursued in nonrelativistic
calculations.

Finally, it should be pointed out that the strategy is related to other ideas in the context of
relativistic field theories. A mathematically well-defined solution to stabilize CL simulations of
QCD-like models is the usage of gauge-cooling, which keeps the sampled configurations close to
the desired manifold via suitable gauge transformations [199-202]. Another practical approach
is the idea of dynamical stabilization, which was developed to further mitigate the excursion
problem. The idea is to confine the non-compact directions of the configurations by a function
that rapidly grows with the distance to the desired manifold. Although the approach cannot be
derived from the action, it can be shown to vanish in the continuum limit [203-205].
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5 Fermi gases in one dimension

“60% of the time, it works every time.”

Brian Fantana, Channel 4 News Team

The numerical study of one-dimensional (1D) quantum systems has received substantial attention
in recent years, not least due to advances in experiments with tightly confined cold quantum
gases. The stochastic approaches developed in the preceding sections may be formulated for 1D
Fermi systems, which considerably reduces the numerical burden compared to higher dimensional
systems. Naturally, this is a good starting point for the way towards the characterization of our
many-body framework in the context of ultracold Fermi gases.

As already remarked in the introduction, a variety of 1D systems is solvable in closed form by
the Bethe ansatz (BA) [70, 71]. The procedure provides closed expressions for many quantities
of interest in the form of coupled integral equations (for continuous systems). To obtain concrete
values, however, the roots of these equations have to be determined numerically which makes it
difficult to obtain exact results beyond the few-body regime. In the thermodynamic limit (TL),
corresponding to the limit of infinite particle number and volume at fixed density, expansions
for several observables exist in both the weak and strong coupling limits. These allow for an
important sanity-check of numerical values in the limit of large particle numbers.

While spin-imbalanced Fermi gases are accessible with the BA, a mass-asymmetry between the spin
species restricts the otherwise powerful approach to selected points of certain symmetries [206-208].
This calls for numerical treatment, as also the mean-field method is actually less suitable for
low-dimensional systems owing to the the enhanced influence of fluctuations.

Several numerical methods specialized to 1D systems are available such as the density-matrix
renormalization group (DMRG) [209, 210] or tensor-network based methods [211], which exploit
the low amount of entanglement in the system. In the few-body regime, reasonable system sizes
can be computed with exact diagonalization due to a lower degree of degeneracy of the energy
states. Moreover, through the usage of certain transformations in combination with worldline
or worm-type algorithms, many 1D models may even be treated with MC methods without a
sign problem despite the presence of imbalances. The reduced computational effort, as well as
the abundance of benchmark methods, render 1D systems an ideal testbed for newly developed
many-body methods. An extensive 1D benchmark study of several state-of-the-art many-body
approaches may for instance be found in [212].

In the following, we investigate the ground state of 1D Fermi gases via the projective formulation
of the lattice approaches discussed in Chapter 2. We start by benchmarking the HMC approach
in the crossover from few to many fermions with equal masses and spin populations [78]. This
initial study sets the methodological stage for the subsequent exploration of systems with either
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one of these two conditions dropped. For the purely mass-imbalanced case, we cross-validate
results from the iHMC and CL methods to establish both approaches as a useful tool for these
otherwise challenging systems [79]. Subsequently, we focus solely on the CL method to investigate
the pairing situation in spin-imbalanced gases. Finally, we combine both imbalances to address
both spin- and mass-asymmetric Fermi gases.

A central quantity of interest is the ground-state energy, which we use to benchmark our results
against existing results in the literature wherever available. Besides this “integrated” quantity, it
is necessary to compute suitable two-body correlation functions in order to study the pairing
structure of spin-up and -down particles. Although true long-range ordering in 1D is prohibited
by the Mermin-Wagner theorem [213], quasi long-range order may still be the case in the sense
of power-law rather than an exponential decay of the appropriate correlation functions. In the
presence of spin imbalance, 1D systems are expected to favor correlations of the FFLO type as
the leading instability. A particularly interesting quantity in this regard, with clear markers for
the pairing patterns, is given by the so-called shot noise which constitutes an exciting opportunity
also for experimental measurements [214].

5.1 Model & scales

The model under consideration in this chapter is the one-dimensional analogue of Eq. (2.1.1)
which simplifies to

L N 2 R N R R
i = / dx{ > wl<x>( Lo )%(x)+g¢l<x>wl<w)w¢<wm<m>}- (5.1.1)
0

T 90 912
ST 2m, Ox

Throughout this chapter we employ periodic boundary conditions, which minimize the influence
of the finite box size L. The model is often referred to as the Gaudin-Yang model [67, 68] and
can be solved in closed form by the Bethe ansatz for the case m, = m, i.e., in the mass-balanced
case.

The coupling g sets the interaction strength and is related to the 1D s-wave scattering length a
through g = 2/a (see, e.g., [12]). To facilitate a comparison to the literature, the dimensionless
coupling

v (5.1.2)

g
n
is introduced, where n denotes the total particle density n = n, +n,. Loosely speaking, v
quantifies the ratio of potential energy to kinetic energy such that |y| > 1 corresponds to the
strongly interacting regime and |y| < 1 to the weakly interacting limit.!

In the following, all results are presented in dimensionless form. For a single species, the ground-
state energy of the noninteracting Fermi gas is obtained by integrating the energy density of
states, defined in Eq. (1.4.1), up to the Fermi energy and is is given by

€F, o 1
Fpg o = / deepP(e) = gNasF?J, (5.1.3)
0

!Especially in BA studies, treacherous factors of 2 may occur. Unless otherwise noted, we assume m = 1 in the
mass-balanced case. In the literature, 2m = 1 is sometimes used.
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with the Fermi energy

by 5.1.4
€F,0 = m (5.1.4)
and the corresponding Fermi momentum
N,
kg, = Wfa =Tn,. (5.1.5)
For a two-component gas we obtain
Bpo = E E n | NE N 5.1.6
FG = Lrgp T FGL = G2 WT—F”TL (5.1.6)
which reduces to
w2 N3
=—— 1.

in the spin- and mass-balanced case with total particle number N = N, + N, and m, = 1.

5.2 From few to many in 1D balanced Fermi gases

As a first step on our way towards imbalanced Fermi gases, we benchmark our lattice approach
in the balanced scenario, i.e., equally populated spin species of equal mass. In this simplest case,
the determinants over the Fermi matrices of both spin species are equal such that

P[] = (det M[¢])* >0 (5.2.1)

according to Eq. (3.3.5). This eliminates the sign problem and allows us to study these systems
with the Metropolis-based HMC method.

With this tool, we explore some essential properties in the crossover from few to many fermions.
It turns out that the question of how many is many strongly depends on the dimension and it is
found that already the modest amount of ~ 5 1 +5 | particles is relatively close to the many-body
limit in 1D. A qualitatively similar trend was observed in recent few-body experiments, which
explore the convergence to the macroscopic limit one particle at a time, albeit in the presence of
a harmonic trap [215, 216].

The results in the present section reflect an extension of an earlier work on these systems, where
we have studied ground-state as well as the lowest excited energies and the contact parameter
from few to many particles [155]. Here, we aim to extract information on the pairing properties
via suitable correlation functions to set the stage for subsequent investigations of spin-imbalanced
systems.

5.2.1 Numerical parameters

Unless otherwise noted, all results for correlation functions in this section are obtained for lattices
of N, = 80, which was found to be close to the infinite-volume limit. Along the same lines, the
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one- and two-body correlation functions were found to be sufficiently converged to the ground
state for fep ~ 2.5 — 4.0, slightly depending on the particle number. Since the extent of the
imaginary-time axis is rescaled with the Fermi energy, the temporal lattice sizes vary for different
particle densities as we have kept the discretization fixed at A7 = 0.05.

All our values represent averages over ~ 5000 statistically independent samples, allowing a
relative uncertainty of ~ 1 — 2%. To accumulate this number of samples, several trajectories
reflecting different initial conditions have been combined. Decorrelation between the samples
was ensured by separating measurements of observables by an average MD-trajectory length
of Ty;p = 1. The trajectories are probed with a discrete step of Aty = 0.05 such that on
average 20 transient states are sampled between subsequent measurements. This procedure yields
an autocorrelation time on the order of 1072 for all observables and parameter values studied.

5.2.2 Energy equation of state

To cross-check the present work with existing results, we re-computed values for the ground-state

energy as a function of the coupling strength and particle number. The ground-state energy is
defined as

~ olnZ
E=(H)=——55+ 5.2.2
(H) 95 (5.2.2)
which results in the following expression within our auxiliary-field lattice approach:
OMZ ()
p-- % [vorwre{pger =) (529
oML} o

in accordance with the discussion in Section 2.6. Note that this form also allows to compute the
kinetic and interaction energies separately.

In Fig. 5.1, we compare our results for F/FEp. with the weak-coupling expansion,

I (5.2.4)

and the strong-coupling expansion,

E 3 ( ¥ )2 42
B Y () 5.2.5
Be =) T\ir2y) Uisaeey) T (5:25)

in the TL as obtained from the BA [217, 218], where Ep is given by Eq. (5.1.7). We observe
that our results are in excellent agreement with the weak-coupling expansion for |y| < 2 and
with the strong-coupling expansion for v < —2. The TL appears to be approached rather rapidly,
which is evident from the inset of Fig. 5.1. With increasing particle number, the energy obtained
on the lattice oscillates around the TL result with a decreasing amplitude.

The exact (binding) energy of one spin-up and one spin-down fermion interacting via a contact
interaction in the infinite-volume limit is given by

By =—g°/4=—37*/m* Epg. (5.2.6)
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Figure 5.1: Equation of state for N = 4 to 12 particles as a function of ||, extrapolated to
infinite volumes. The dashed and dot-dashed lines are the results from the BA [217] in the TL
for weak and strong coupling, respectively. (Inset) Particle number dependence of E/Ep for
v = —0.2 and v = —1.0 compared to the BA.

From Eq. (5.2.5), we observe that the ground-state energy per pair is simply given by the energy
of the 1 + 1-body problem, E/N,
Loosely speaking, the dynamics in the strong-coupling limit may therefore be viewed as dominated

airs = —9°/4, at leading order in the strong-coupling expansion.
by the formation of tightly bound 1]-pairs. In the strict infinite-coupling limit 1/ — 0, the
many-body system may be viewed as a gas of composite bosons, known as the Tonks-Girardeau
gas [219].

In the weak-coupling limit, a finite gap A/Epg ~ |yle ™ /1) has been found to emerge
between the singlet ground state and the first triplet excited state together with gapless density
fluctuations [217, 220-223]. Consequently, the dynamics of the many-body system in this limit is
associated with a BCS superfluid. For a detailed discussion of the many-body phase diagram
see, e.g., [223]. Here, we only highlight that a smooth crossover from the formation of tight
bosonic molecules in the limit 1/ — oo to Cooper pairing in the limit 1/ — —oo is found to
occur at v ~ —2 in this system. At this point, the size of the bosonic pairs is of the order of the
distance between the fermions [217, 223].

Indeed, for the two-body problem in the infinite-volume limit, the “diameter” d,, of the bosonic
pair is given by dy = 2/|g|, see, e.g., [224]. Thus, we have dyn = 2/|y| which may be viewed as a
measure for the crossover point in terms of the coupling at which the properties of the system
change significantly.?

In the following subsections we do not aim at a detailed quantitative discussion of the phase
diagram but focus on our results for the momentum distribution as well as the one- and two-body
density matrices.

*We define the diameter dy as £|®(0,d,/2)|? = [®(0,0)|?, where ®(z,x)) is the ground-state wave function.
Note that @ is only a function of |z, — x| in the infinite-volume limit.
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5.2.3 One-body response functions

The one-body density matrix p, in principle allows us to compute all single-particle expectation
values and is defined as ground-state expectation value of a creation and annihilation operator:

palz,a’) = (Wh(2)de (), (5.2.7)

where o refers to the spin index and the operators t, (1+) denote annihilation (creation)
operators, respectively. In terms of a general N-body wave function ®(z; 1,2 1, ..., Ty N, xl,NJ’
the one-body density matrix associated with a single spin species is given by

(z,2") = N, dyz / dyn (2, ¥z, -, YN R(2, Y, o, YN) - (5.2.8)

L
2

m\h

The single-particle momentum distribution nf,  is implicitly defined by the Fourier transform of
the above expression:

Z e (@) ng, p4(a) (5.2.9)

where

1 iwpT
o) = ﬁe (5.2.10)

and w;, = 2wk/L for a periodic box of extent L considered in this work.

The one-body density matrix p, determines the overlap of a state in which a fermion with
spin ¢ has been removed from the ground state at point z’, with a state in which a fermion with
the same spin ¢ has been removed at point x. Correspondingly, the associated single-particle
momentum distribution determines the overlap of a state in which a fermion with spin ¢ and
momentum ¢ has been removed from the ground state, with a state in which a fermion with
the same spin o but momentum £ has been removed. From the definition of the single-particle
momentum distribution, it follows immediately that it is only finite for |k| < kp and |g| < kg in
the noninteracting limit.

In a periodic box, the one-body density matrix of the noninteracting system can be computed
analytically. We find

N,
p(z,x") = i{l + 22005 (wj(x—2x")) (5.2.11)
=1
+ O(N_ mod 2),0 [cos (wNUH(:c — x’)) — cos (wNUH(:U + :1:/)) } },
where

(5.2.12)

N (N, —1)/2 for N, odd,
(N,—2)/2 for N, even.
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Figure 5.2: Diagonal part of the momentum distribution nj as a function of k/kp for v =
—0.2,—1.0,—2.0,—3.0,—4.0 (blue, green, yellow, orange, red symbols, respectively) for various
particle numbers N (different panels). Solid lines are guides to the eye. (Insets) Asymptotic
behavior on a double logarithmic scale.

For odd N, the one-body density matrix of the noninteracting system is a translation-invariant
quantity as it only depends on the distance between z and z’. For even N, however, the
one-body density matrix of the noninteracting system is no longer translation-invariant in a
periodic box but depends on x and z” separately, see Eq. (5.2.11). Nevertheless, in the large-N_
limit, the term breaking translation invariance is only subdominant, implying that the one-body
density matrix becomes a translation-invariant quantity in the TL, as it should be. In fact, we
have
sin (mn, |z — 2’])

" = 5.2.13
pala, ') = TS (52.13)
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for fixed n, = N, /L with N, — oo and L — co. We emphasize that the breaking of translation
invariance in systems with even N, is a direct consequence of the fact that the ground-state
wave function of the noninteracting system is not an eigenstate of the center-of-mass momentum
operator ]5tot. It is, however, an eigenstate of 1530t For odd N_, on the other hand, the ground-
state wave function is an eigenstate of ]ADtOt with zero eigenvalue.® Since the ground-state wave
function of the fully interacting system is effectively generated by exciting the ground-state wave
function of the noninteracting system according to the momentum-conserving interaction, we
conclude that translation invariance of the ground-state wave function is preserved in our MC
see also [225] for
a discussion of this issue for systems in (anti)periodic boxes. We return to this below when

studies for systems with odd N_ but is violated for systems with even N_,
discussing our results for the one-body density matrix.

From the one-body density matrix in Eq. (5.2.11), the momentum distribution n7,  of the
noninteracting system is readily obtained. We find

ng, = 04 0(N, — [k|) (5.2.14)

1
+ 55(N5m0d2),0 (5k,(N0+1) - 6k,7(NU+1)) X (5q,(NU+1) - 5q,7(NU+1)) ’

where

1 forz>0,
o(z) = o= (5.2.15)
0 otherwise.

In Fig. 5.2, we show our results for the diagonal part of the momentum distribution nj = nf,
for both spin species as a function of k/ky for various particle numbers and coupling strengths ~.
For small values of the coupling, 0 < |y| < 1, the momentum distribution is still well described
by the noninteracting momentum distribution, independent of the total particle number N. For
stronger couplings, v < —2, the system is then dominated by the formation of tightly bound
dimers where the crossover to this regime from the weakly coupled regime dominated by Cooper
pairing occurs at v ~ —2, as already remarked above. In the regime with v < —2, the momentum
distributions clearly deviate from their noninteracting counterparts. More specifically, even
fermions which initially reside in states with low momenta are now excited above the Fermi
point kp. Loosely speaking, the momentum distributions effectively start to flatten out when the
coupling is increased beyond v < —1 and therefore these distributions lose their characteristic
feature of a sharp drop present in the weak-coupling limit.

From the scaling behavior of the momentum distribution, further quantities such as the sound
velocity [226, 227] and Tan’s contact parameter [228-230] may be obtained. The former dictates
the scaling behavior close to the Fermi point and may be computed, for instance, by performing a
fit to the numerical data in the low-momentum regime k < kp. Without discussing further details,
it was found that the sound velocity remains close to the Fermi velocity for |y| < 2. For |v| = 2,
the sound velocity then starts to decrease rapidly, indicating that the system enters the crossover

3As the Hamiltonian and parity operators commute with each other, the ground-state wave function (including
the center-of-mass motion) can be chosen to be an eigenstate of the parity operator. Note that the part of the
ground-state wave function describing the relative motion of the fermions has even parity whereas the parity of
the center-of-mass wave function can be chosen at will. In our numerical implementation, conventions effectively
correspond to choosing the center-of-mass wave function to have odd parity for even N_. For odd N_, we choose
the center-of-mass wave function to have odd parity if (N, —1)/2 is odd, and otherwise even.
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area between the regime dominated by Cooper pairing at small attractive couplings and a regime
governed by the formation of a gas of tightly bound bosonic molecules, in accordance with earlier
studies [223]. These findings are in good agreement with Bethe ansatz results in the TL at large
and small coupling [220, 222].

To extract Tan’s contact, it is possible to exploit the asymptotic behavior of the momentum
distribution, which is related to the contact parameter C' via

C = lim kin,. (5.2.16)
|k|—o00

By performing a linear fit to n; for momenta with |k| > kp on a double-logarithmic scale we
may extract C, see also the insets of Fig. 5.2. Note that, for very dilute systems, the high
momentum part is subject to noise which explains the seemingly odd behavior at large momenta.
In addition, the high-momentum occupancy is very sensitive to the finite size of the box. These
effects complicate a determination of the contact parameter through this procedure. Nevertheless,
agreement was observed with previously obtained results for even N, using a different route
towards a determination of the contact parameter via the Feynman-Hellmann theorem [155]. The
present determination, however, exhibits a larger errorbar and is therefore inferior to the more
stable procedure in [155]. A detailed discussion of Tan’s relation in 1D may be found in [231].

In addition to the momentum distribution, we here discuss results for the one-body density matrix.
In Fig. 5.3, we present our results for p, as a function of the dimensionless coordinates kpx
and kpz’ in a periodic box for N =21 +2],31+3 [,47 44 |,5 1 +5 | fermions (from left to
right) and v = 0,—0.2, —3.0 (from top to bottom). The color coding is associated with the value
of the one-body density matrix at the point (x,2”). The results for finite  represent numerical
data from our MC calculations, whereas the result for the noninteracting system (v = 0) was
obtained analytically in Eq. (5.2.11).

The results shown in Fig. 5.3 exemplify our findings for other particle numbers. As suggested
by the analytic solution for the noninteracting limit, we observe that the number of oscillations
at fixed coupling and box size increases with increasing particle number. The scale for these
oscillations is set by the density. The main maxima of the one-body density matrix are found
along the lines with |z — 2’| = vL, with v € Z. However, as already indicated above, we also
clearly see that translation invariance is broken for even NN_, whereas it is manifest for odd N,.
Loosely speaking, this invariance is progressively restored as the particle number is increased.
The mild violation of translation invariance for v = —3.0 and odd N, in Fig. 5.3 is due to
statistical uncertainties in our MC calculations at strong couplings.

5.2.4 Pair correlation function

In addition to the one-body quantities, we have calculated the pair-correlation function, also
known as the on-site two-body density matrix. In one-dimensional systems, this function has
attracted a lot of interest for instance in the search for FFLO phases [232]. It is defined as

pr(a,a’) = (G (@)d] @)y (2 )iy (2)) - (5.2.17)
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Figure 5.3: One-body density matrix p,(z,z’") as a function of the coordinates x and z’ for
N=2142],31431,47+4 ],51 45 ] fermions (from left to right) and v = 0,—0.2,—3.0
(from top to bottom) in a periodic box with L. The analytic result for the noninteracting limit
(v =0) is given in Eq. (5.2.11). The color coding is associated with the value of p,(z,z") (largest
values are colored red, lowest values are colored blue). The violation of translation invariance
is clearly visible in the results for even N_ but is continuously weakened for increasing NV, see
main text for a detailed discussion.

This expression can be rewritten in terms of the ground-state N-body wave function &:

L L
L
‘)N(x7$/) — N M/z ys_./Q ]yN CI) ($,$7y3?"' ’yN) X (I)(f[f/’ /,y3"“ ,yN) . (52 8)
L L
_L
NO‘C ‘ha‘

[t

where N, NN, is the number of all possible combinations of one spin-up fermion with one spin-down
fermion in a system with N = N, + N| fermions.

The pair-correlation function determines the overlap of a state in which a pair of one spin-up
and one spin-down fermion has been removed from the ground state at point z’, with a state in
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ny

Figure 5.4: Pair-momentum distribution function n (k/kp) for N = 7 1 +7 | fermions and
different values of the coupling.

which such a pair has been removed at point x. Correspondingly, the so-called pair-momentum
distribution n (k, q) determines the overlap of a state in which a pair of one spin-up and one
spin-down fermion with momentum ¢ has been removed from the ground state, with a state
in which such a pair with momentum & has been removed. It is implicitly defined through the
Fourier transform of the pair-correlation function

pry (T, 2’ ngk z)ny (k, q)p, (") . (5.2.20)
From Eq. (5.2.19), it follows immediately that
Z”w (k; q)

Note that, by definition, the pair-momentum distribution is related to the propagation of a pair

_ NN
T L (5.2.21)

of vanishing size.

In the noninteracting limit, the pair-correlation function is simply the product of the one-body
density matrices associated with the spin-up and spin-down fermions:

pry(x,2") = pr(w,2”)p (z,27). (5.2.22)

We immediately conclude that the pair-correlation function in a periodic box also suffers from
terms violating translation invariance for even N_. Thus, the convergence to the TL is in general
expected to be faster for odd N,. For our discussion of the pair correlation function in this
work, we shall therefore focus on the latter case from now on. The associated pair-momentum
distribution of the noninteracting system then reads

ny, (k, q) —iNO(N, — |5 + k) . (5.2.23)
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Without loss of generality, we may now assume NT >N | to obtain

5k,q

ny (k,q) = (2N, + 1)0(|N, — N|| — |k| — 1) (5.2.24)

L
+ (N, + N, +1—|kDO(|k] — [N, — Ny|) x (N, + N, — |k])|,

with the definition of f(x) as in Eq. (5.2.15). From this expression, we observe that, for spin-
balanced systems, the pair-momentum distribution assumes a global maximum for k = ¢ = 0.
Phenomenologically, this implies that finding an on-site pair with zero momentum is most
probable. This observation is in line with standard BCS theory where pairing of spin-up and
spin-down fermions both located on the Fermi surface but with opposite momenta is most
favorable in the presence of an infinitesimally weak but finite attractive coupling, eventually
leading to a destabilization of the Fermi surfaces.

We note that, for spin-imbalanced systems, the pair-momentum distribution of the noninteracting
system remains constant up to momenta q ~ |kp, — kg || and then decreases monotonically.
For interacting spin-imbalanced systems, the pair-momentum distribution has even been found
to develop maxima at +¢, see Refs. [232, 233]. Since ¢ is associated with the center-of-mass
momentum of the formed on-site pairs, the observation of such maxima may be viewed as a
precursor for the formation of FFLO-type ground states, where g sets the scale for the periodic
structure of the ground state in the many-body phase diagram [52, 53]. A priori, however, the
mere existence of such maxima in the pair-correlation function does not necessarily entail that
pairs with momenta ¢ describe the lowest-lying two-body states in the spectrum and that a
condensate is composed of these states, see, e.g., [234]. Still, (pronounced) maxima at +q may
be viewed as an indication that the formation of pairs with momenta ¢ is favored.

In Fig. 5.4, as a concrete example for the pair-momentum distribution, we show our results
for the diagonal part of n; as a function of the momentum k for a spin-balanced system
of N =77 47 | fermions. For increasing coupling v, we observe that the pair-momentum
distribution progressively narrows, resulting in an increase of the maximum at vanishing momenta.
This may be viewed as an indicator that it is energetically favored for pre-formed on-site pairs to
occupy the state of zero center-of-mass momentum.

Finally, it is worthwhile to note that the observed progressive formation of a narrow maximum in
the momentum distribution associated with the formation of on-site pairs is also consistent with
the observation that the system is expected to undergo a smooth crossover from Cooper pairing
at small attractive couplings to a gas of bosonic molecules at v ~ —2, see the discussion above.

5.3 Mass-imbalanced fermions: equation of state

In this section, we extend our study of balanced Fermi gases to systems consisting of fermions
with different masses. Given the rapid experimental progress in the context of mass-imbalanced
quantum gases, this study aims at the further theoretical development of stochastic frameworks
required for ab initio studies of such systems in any dimension. With these developments, we
particularly aim at aspects which can currently be accessed only in a very limited fashion with
conventional MC methods, if at all, as a consequence of the fermionic sign problem.

To test our developments, we examine the EOS of mass-imbalanced Fermi mixtures when confined
to one spatial dimension. Although 1D systems are also experimentally relevant, as remarked
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above, we do not aim at a high-precision calculation of the EOS with the present study. Our
goals are rather of methodological nature. From this standpoint, the 1D limit is appealing since
the running times of the computations are comparatively short and it is therefore possible to
take vastly more data than in higher dimensions. This allows to reduce systematic errors (e.g.,
by studying large lattice sizes) and to focus on the underlying methods. Moreover, as it is well
known, 1D systems of fermions with contact interaction are typically solvable by the Bethe ansatz
for arbitrary particle numbers [71]. However, as remarked already above, an analytic solution
is currently out of reach for systems involving particles of general unequal masses. While the
two-body problem can of course be solved, the solution of mass-imbalanced few-body systems
is restricted to specific mass configurations [206, 208], infinite interaction strength [207], or
specific boson-fermion mixtures [235]. In any case, the existence of analytic solutions in some
cases and the absence of theoretical results in other cases represents a further motivation for the
developments discussed in this section.

It is worth noting that progress has been made in related cases such as the half-filled asymmetric
Hubbard model in 1D [236] as well as 3D [237], which does not feature a sign problem and is
directly connected to the Falicov-Kimball model in the limit of large asymmetry. Cases away
from half filling were also studied in [238, 239] and the few-body limit was recently addressed by
means of a suitable worldline algorithm that can be formulated without a sign problem in 1D [122,
123]. Furthermore, exact diagonalization studies have addressed harmonically trapped systems
of up to N; + N, = 10 particles [240, 241]. While these methods provide results for the few-body
regime, it is challenging to extend them beyond low particle numbers or to higher dimensions due
to the prohibitive scaling of memory requirements. A recent review on one-dimensional few-body
mixtures, involving mass-imbalanced systems, may be found in [242].

Below, we present our fully nonperturbative results for the ground-state energy of interacting
fermions of unequal masses. We compare our results to those obtained by other methods wherever
possible. Additionally, we show the EOS for the ground-state energy as a function of interaction
strength across a wide range of mass imbalances. To the best of our knowledge, this is the first
determination of the full EOS for mass-imbalanced fermions interacting via a contact interaction
in 1D.

5.3.1 Scales & parameters

To quantify the mass imbalance between the two spin species, we introduce the dimensionless
relative mass-asymmetry

mys —Mm
P B

W, (5.3.1)
which vanishes in the case of equal masses. For systems with balanced spin populations considered
in this section, the results are invariant under the transformation m — —m. Fixing the relative
asymmetry only eliminates one degree of freedom, such that several choices of (m,,m ) lead to
the same value of m. In the following, we choose to work at constant total mass M = m, +m
which motivates to write the particle masses as

om
My, = Mo + =~

; (5.3.2)
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with

_ om
m=—. (5.3.3)
2my,
We set m, = 1 for the remainder of this section, which fixes the scale for the masses in our
calculations. With these conventions, a mixture of *6!Dy and “°K corresponds to m ~ 0.602.

To calculate the noninteracting energy on the lattice, we simply sum the single-particle energies.
As a function of the mass imbalance m we obtain

1
where E| is the corresponding noninteracting energy for mass-balanced systems on the lattice.
Note that the energy as obtained from a calculation in the mean-field approximation exhibits
the same dependence on m as the noninteracting system (see, e.g., [63]).

Numerical parameters

Throughout this section, we set the number of 1D spatial lattice sites to N, = 40, which was
found to be sufficient for the methodological purpose of the present investigation. A scaling
behavior of 1D mass-balanced Fermi gases was performed in an earlier investigation and may be
found in [78, 155]. As before, the temporal lattice spacing was chosen to be 7 = 0.05 which is
sufficient to study the interaction strengths under consideration, even in the presence of a mass
asymmetry. Furthermore, we numerically extrapolate to the limit of large imaginary time Sep by
averaging over a few results obtained at sufficiently large propagation times, following also the
discussion for the balanced systems and [155]. To carry out that extrapolation, we performed
calculations on temporal lattices as large as N ~ 1500, which we found in previous works to be
sufficient for the particle numbers and couplings considered here.

Each data point shown was computed using an average of ~ 5 x 10® decorrelated samples (both
in the iHMC and CL approaches), which have been obtained via a few independent trajectories.
For the iHMC results, we have relied on the same numerical parameters as in the balanced
case. This leads again to an integrated autocorrelation time of 7,,, ~ 1072, largely unaffected by
the mass imbalance. For the CL study, we have employed an adaptive integration step whose
influence on the ground-state energy is investigated below. The resulting autocorrelation is
comparable to the ones from iHMC results. All in all, our choice of parameters allows us to
determine observables within a statistical uncertainty of ~ 1 — 2%.

Note that for mass-imbalanced systems the eigenvalues of the transfer matrix spread further
as in the case of equal masses, as a consequence of the change of kinetic energy in the system.
For sufficiently large mass asymmetry, the propagation could therefore become unstable, as
floating point arithmetic is incapable of resolving the spread of the eigenvalues which ultimately
leads to ill-conditioned Fermi matrices. The onset of this behavior was observed for the largest
mass imbalances studied in this section. However, no problematic influence on our numerical
results was observed. For larger lattice sizes, and particularly in higher dimensions, one should
nevertheless carefully monitor this issue, as the problematic parameter range could then involve
points of physical interest.
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5.3.2 Imaginary mass imbalance

As a first step, we approach the mass-imbalanced problem with the iHMC method introduced
in Section 4.3.1. The algorithm requires to shift the mass asymmetry to the complex plane which
is achieved by applying the transformation

om — idm. (5.3.5)

As discussed in Section 4.3.1, this renders the path-integral measure positive-semidefinite and
therefore allows us to employ a Metropolis-based algorithm. The left panel of Fig. 5.5 shows
our results for the ground-state energy (black diamonds) for various couplings as a function
of imaginary m. The solid black line represents the corresponding noninteracting Fermi gas,
according to the transformation of Eq. (5.3.4):

E. -, [1—i—(izm)2] . (5.3.6)

This expression suggests the use of a Padé approximant to fit the data, which takes on the form

—_ 2'
Zi21 blm !

f(m) = —,
1+ ijl c;m

(5.3.7)

where the even powers reflect the symmetry under m — —m, and the b,’s and c¢,’s are fit
parameters. The colored lines in Fig. 5.5 represent a least-squares fit of the above form with
a polynomial of order 2 (4) in the numerator (denominator). The nearly perfect agreement
with the numerical data is crucial when performing an analytic continuation to real m as small
variations in the fit parameters can greatly influence the final results for real mass imbalances.
In principle, higher orders can be included in the polynomials which has been found, however, to
limit the stability of the fit procedure. Therefore, we only use the aforementioned order of the
Padé approximant in this work.

To obtain results for real m, we perform an analytic continuation to the real axis via the inverse
transformation of Eq. (5.3.5), namely idm — dm. The results of the analytic continuation are
shown in the right panel of Fig. 5.5 along with the 95% confidence level (shaded bands). We find
very good agreement with the form of the noninteracting result (solid black line) and the results
for the energies are very stable with the order of the Padé approximant up to m ~ 0.5...0.6.
For mass imbalances beyond m ~ 0.6, however, the associated uncertainties grow rapidly and a
quantitative prediction for the ground-state energy (or any other observable) is not guaranteed,
particularly at strong couplings. At very high imbalances (not shown in this plot), it is even
possible that the qualitative trend as a function of m changes due to the effect of the higher-order
terms in the functional form of the fit. A possibility to remedy this issue might be to use a larger
amount of data and a finer grid for the (—im)-axis. While this is feasible (albeit tedious) in 1D,
the numerical effort in 2D and 3D would be definitely prohibitive.

5.3.3 CL & mass-imbalanced Fermi gases

To complement the iHMC study above, we exploit the CL method, as introduced in Section 4.5, to
address mass-imbalanced fermions. This algorithm, as opposed to the HMC approach, introduces
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Figure 5.5: Ground-state energy of N =3 1 43 | fermions as a function of imaginary (left) and
real (right) mass imbalance for various couplings v from weak to strong attractive interaction (lines
ordered from top to bottom). (Left) iHMC results for imaginary m (black diamonds, statistical
error bars are of the size of the symbols) with Padé approximations according to Eq. (5.3.7)
(solid colored lines). The black solid line shows the noninteracting result on the lattice. (Right)
Analytically continued ground-state energies as a function of real mass imbalance (solid lines)
along with the 95% confidence bands (shaded areas). The plot range in the right panel was
limited to m = 0.65 due to large uncertainties beyond that point.

a dependence of the integration step which needs to be addressed before being able to discuss
results as a function of physical parameters. After an investigation of these systematic effects,
we proceed with a benchmark of the CL method for balanced systems and a cross-check of the
CL results to the above-discussed iHMC values in the mass-imbalanced case. Finally, we present
the full energy dependence on the interaction strength over a wide range of mass imbalances.

Numerical artifacts

Before studying our results as a function of physical parameters, we here investigate potential
systematic bias stemming from numerical artifacts. As already discussed in Section 4.4.2, the
use of CL implies a finite integration step At of the Langevin equation. Here and in all CL
investigations to follow, we employ an adaptive integration step which was found to be crucial in
order to stabilize the CL trajectories [192].% Furthermore, in order to stabilize the calculations
against uncontrolled excursions in the complex plane, the auxiliary field is confined around the
origin by a harmonic confinement of strength &, dubbed the regulator (see Section 4.5.5). We
investigate the influence of both parameters for a system of N = 545 particles with m = 0.3. The
choice of these parameters is essentially arbitrary and only exemplifies the numerical accuracy of
all other datasets. To facilitate a comparison to the iHMC results above, we chose an attractive
coupling of v = —1.0.

The dependence of the ground-state energy on At for the above systems is shown in the left
panel of Fig. 5.6. Within the statistical uncertainty, the trend may assumed to be linear, which

4The adaptive step size implies that At is not constant throughout the propagation in Langevin time, such
that At should be more correctly referred to as average integration step. In the following, we use both terms
interchangeably, as is common in the literature.
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Figure 5.6: Ground-state energy for a 5 T 45 | system with m = 0.3 and v = —1.0. (Left)
Dependence on the integration step At for various values of the regulator strength &. (Right)
At — 0 extrapolated values as a function of &, along with a comparison to iHMC results (black
square at £ = 0). In both panels, linear fits are shown as dashed lines and the extrapolated
values are indicated by symbols in the appropriate limit.

we exploit to extrapolate the ground-state energy to the limit At — 0 via a least-squares fit
(diamonds at At = 0). For £ = 0.1, the dependence on At appears to be relatively mild.

In the right panel of Fig. 5.6, ground-state energies are shown after an extrapolation At — 0
as a function of the regulator £&. The results in the considered regulator range display almost
perfect linear behavior which allows a relatively precise extrapolation to vanishing £. At £ =0
we compare the extrapolated result to the iHMC value from our previous calculation and observe
excellent agreement.

The above procedure was found to be essentially independent of the order of extrapolations, i.e.,
it does not matter if £ — 0 is extrapolated before the step-size dependence or vice versa. In
any case, the variation of our numerical results for different £ and At is only of a few percent
such that an exact extrapolation to the appropriate limits may be omitted for a first benchmark.
Based on this analysis, we chose the strength of the regulator to be £ = 0.1 and the average CL
integration step At = 0.01 for the discussion of the following results. For high-precision results
beyond these first methodological benchmarks, however, extrapolations should be carried out
explicitly.

Benchmark: Equal masses at arbitrary interaction

We begin by considering the mass-balanced scenario in order to conduct a detailed benchmark
study of the CL method in the context of nonrelativistic fermions. In the left panel of Fig. 5.7
we compare our results for attractive interactions, i.e., v < 0, with a variety of other methods
across a wide range of interaction strengths. We find good agreement with the results discussed
in Section 5.2, which in turn have been found to agree with exact results from the BA in the TL
(also shown in the plot). The small discrepancy at large negative values of ~ originate from the
finite system size considered in this work, while the previous HMC results are extrapolated to
infinite volumes. Additionally, we show results from a renormalization-group approach to density
functional theory based on the microscopic interactions defining our model [243]. We abbreviate
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Figure 5.7: Ground-state energy of N =5 7 45 | fermions of equal mass (m = 0) as a function
of interaction strength. (Left) Attractive interaction. CL results (blue squares) compared to
HMC results (red diamonds), DFT-RG [243] (dashed-dotted line) and BA expansions in the TL
for weak (solid line) and strong (dashed line) attraction [217, 218]. (Right) Repulsive interaction.
CL results (blue squares) compared to DFT-RG (dashed-dotted line), weak BA expansion in
the TL (solid line), exact few-body BA results (dashed line) and worldline MC values (red
circles) [122].

this approach as DFT-RG which was put forward in Refs. [244-247]. As shown in Fig. 5.7, we
find excellent agreement with this method for —2 < 5. Note that |y| < 2 is roughly the range
where the DFT-RG approach is able to formulate reliable predictions based on state-of-the-art
truncations presently restricted to mass-balanced systems.

In the right panel of Fig. 5.7, we benchmark our values for repulsive interactions, i.e., ¥ > 0, which
were previously inaccessible with the HMC method because of the sign problem. Agreement
between the weak coupling expansion results from the BA (solid line), DFT-RG and our CL
values is observed up to v < 2. While the former two methods are restricted to interactions in
this regime, the CL method in principle does not have a constraint in terms of the interaction
strength. A comparison to a very recent determination of the ground-state energy based on
a sign-free worldline MC algorithm [122, 123], however, reveals some discrepancy between the
methods for v = 2.0. While the CL results seem to level off, the worldline results continue to
grow. The latter is in agreement with exact BA results for the 5 1 45 | system (dashed line),
taken from [122]. At first glance, the relative discrepancy at v = 3.0, which is the largest
value considered in the present work, seems to be comparable to the deviation at the largest
couplings on the attractive side. While the attractive values have been observed to converge to
the appropriate values with increasing system size, a finite-size investigation up to N, ~ 100 on
the repulsive side did not change the outcome significantly.

The faulty values at large repulsion raise some concern regarding the reliability of the CL approach.
To further investigate this issue, the histograms of the sampled values for the ground-state energies
at large attraction (y = —3.0) and large repulsion (v = 3.0) are shown in Fig. 5.8. A comparison
highlights the fundamentally different behavior: While the distribution P[E] is well localized
(and in fact almost perfectly Gaussian) on the attractive side, the repulsive system exhibits
so-called “fat tails” which refers to slowly decaying skirts of the histogram. Their appearance
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Figure 5.8: Histograms of the samples ground-state energies for strongly attractive (left) and
repulsive (right) interactions of |y| = 3.0. The dashed lines represent a Gaussian with the
estimated sample values for the mean and the variance.

is problematic in several ways: First of all, a slowly decaying probability function might not
have a well-defined second moment which would imply infinitely large error bars. Practically,
this means that the variance of the sampled observable diverges with an increasing number of
samples, thereby nullifying the advantage of MC approaches altogether. Such a behavior could
originate for instance from an overlap problem of the trial wavefunction an the actual physical
distribution, which ultimately leads to a poor signal to noise ratio. Alternatively, this could be
the hallmark of numerical instabilities in the imaginary time propagation, leading to frequent
outliers.

The second problematic aspect is the formal validity of the CL approach, as discussed in Sec-
tion 4.5.3. The fat tails of the observables may be related to the appearance of boundary terms,
which in turn invalidate the proof of correctness of the CL method. A detailed investigation of
the faulty behavior is necessary to conclusively identify the true reason for the frequent outliers.
Such a study is beyond the scope of the present thesis and is deferred to a future project.

We note that the onset of these problems is already visible, to some extent, for weaker repulsion
where the CL results agree (quite well) with other methods. The frequency of the sampled
outliers, however, is much lower in these systems such that the statistics is sufficient to “override”
the few faulty values. As a consequence of the problematic behavior at large repulsion, we shall
only consider attractive systems in the following.

Comparison among stochastic methods for general mass imbalances

Motivated by the excellent agreement between CL and other methods in mass-balanced systems,
we expand our investigation to mass-imbalanced systems. As mentioned above, there is no need
for analytic continuation, which saves computational effort since we only have to compute single
data points (as opposed to a grid of data points with subsequent fitting). Although it is possible
to run calculations for an arbitrary configuration of the fermion masses m, and m, we stick
to the definition Eq. (5.3.2) introduced with the iHMC method to facilitate a straightforward
comparison.

A comparison of iHMC and CL results is shown in the left panel of Fig. 5.9 for a system of
N =41 +4 | fermions at various attractive coupling strengths. We find excellent agreement
between the methods up to m ~ 0.5 — 0.6, where the iHMC algorithm starts to develop large
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Figure 5.9: Ground-state energy as a function of mass imbalance. (Left) Comparison of iHMC
(lines) and CL (symbols) results for 4 T +4 | fermions for v = —0.6, —1.0 and —1.4. (Right)
Comparison for systems of 3 1 43 | fermions at v = —3.0 between CL (squares), iHMC (line)
and worldline MC (circles) [122]. In both panels the shaded areas represent the 95%-confidence
interval of iHMC data, the statistical uncertainties of the CL data are smaller than the symbol
sizes.

uncertainties. Remarkably, the results obtained with the CL algorithm continue to be smooth
well beyond this regime and the statistical uncertainties are of roughly constant magnitude across
all considered imbalances.

In the right panel of Fig. 5.9, we compare our results to the worldline MC approach from [122, 123]
which became available after our initial calculations for mass-imbalanced systems. This approach
may be formulated without a sign-problem in 1D, however, a sign-free generalization to higher
dimensions of this strategy is not possible as opposed to CL. Moreover, the worldline method
appears to be best suited in the few-body regime, whereas the CL approach readily extends to
many-body systems, as further discussed below. We observe excellent agreement between all
three stochastic methods across all mass imbalances available which verifies the applicability of
iHMC and CL for general mass-imbalanced systems.

Equation of state for mass-imbalanced fermions

Thus far, we have compared our CL results to various methods and found excellent agreement
for all cases considered. Most of the parameter space, however, is generally difficult to access
due to analytic and numerical problems, as pointed out above. The CL method is, however,
able to predict values for arbitrary m and across a wide range of both attractive and repulsive
interaction strengths, although the results for strong repulsion (v = 1) display problematic tails
of the sampled histograms, as our discussion above shows.

To underscore this ability, we present in Fig. 5.10 our determination of the EOS for mass-
imbalanced fermions. As apparent from the figure, the results are smooth as a function of
interaction strength and mass imbalance and intersect the correct noninteracting results on the
vertical line at v = 0. It is also evident in Fig. 5.10 that the EOS becomes linear in a region
around v = 0. This linear region can be compared with a first-order perturbative calculation of
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Figure 5.10: Ground-state energy of N =5 1 +5 | fermions as a function of the dimensionless
coupling  for several mass imbalances m as obtained from our CL approach. Error bars are of
the size of the symbols and smaller. The dashed-dotted lines show the first-order perturbative
results as given in Eq. (5.3.8).

the ground state energy, as shown in Fig. 5.10, which is given by

E E, 24 NN
_ 2N 002, 5.3.8
Brg ~ Erg V4N, (v*) (5.3.8)

with E,, as in Eq. (5.3.4). Note that the first-order correction in v does not depend on the
mass imbalance m, which is reflected in Fig. 5.10 by the fact that the slope at v = 0 does not
change as m is increased. Moreover, we observe that our numerical data agrees very well with
this perturbative result around v = 0, indicating that our CL approach indeed works reliably,
at least in the weak-coupling limit. Interestingly, we deduce from this comparison that the size
of the linear region depends on m and on the sign of the coupling +. In fact, the size of the
linear region is not symmetric around v = 0 and even appears to increase with increasing m for
attractive couplings (v < 0).

Our results make the versatility of our CL approach evident. In fact, very promisingly, this
enables us to predict values for the ground-state energy at couplings and mass imbalances relevant
to experimental setups where analytic expressions are not available and stochastic calculations
have only been of limited use so far because of the sign problem. Such experiments include
for instance mixtures of the fermionic atoms °Li and 4°K corresponding to m ~ 0.74 but also
mixtures with smaller values of m realized with a variety of suitably chosen different fermion
species (such as °Li, 4°K, 161Dy, 163Dy, and 157Er) in the future (see, e.g., [248-250]).

Finally, it is worth noting the peculiar flattening of the EOS. Initially, our analysis suggested that
this behavior could hint at the so-called fermionization, referring to the fact that an interacting
system of distinguishable fermions becomes equivalent to a system of noninteracting identical
fermions in the limit of infinite repulsion. Such a behavior was discussed for mass-balanced
systems (see, e.g., [219, 251, 252]) and evidence for this behavior has even been observed in
experiments [215, 253-255]. As the discussion above clearly shows, however, our CL results are
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compromised for large repulsive interactions such that this conclusion is in fact wrong. The effect
of flattening can be traced back to shortcomings of our numerical treatment whose investigation
will be the target of future efforts.

5.4 Spin-polarized fermionsin 1D

In this section, we continue our characterization of imbalanced Fermi gases by considering
two-component systems with a population imbalance. As already mentioned in the introduction,
the spin asymmetry is quantified by the relative polarization

D (5.4.1)

)
ny +n
which is confined to the interval p € [—1,1]. In the case of equal masses of the spin species, which
we address in this section, all results are invariant under the transformation p — —p. Without
loss of generality, we consider p > 0 in the following such that the up-component is also referred
to as the majority species.

At p = 0 it follows that n, = n, such that the system is balanced and therefore amenable to
MC treatment free of the sign problem, as was discussed in Section 5.2. In this limit, particles
tend to form 7T]-pairs and the ground state is protected by the uniform energy gap A. At full
polarization, i.e., p = 1, on the other hand, only majority particles are present such that the
gas is noninteracting as a consequence of the Pauli principle. The interesting question is now
the intermediate regime for p in the interval (0,1): As opposed to the three-dimensional case
discussed in the introduction, no real symmetry breaking can occur in 1D as a consequence of
the Mermin-Wagner theorem [213]. Thus, no real phase transition can be expected but rather, if
anything, a smooth crossover between different regimes.

It turns out that for equal masses the Hamiltonian in Eq. (5.1.1) is integrable by means of the
BA for arbitrary polarizations [256, 257]. This technique was employed to study the full phase
diagram of 1D Fermi gases with attractive interaction in dependence of the chemical potential
vs. the Zeeman-field h. Indeed it was found that FFLO-type pairing is the leading instability
in a wide parameter range which was further consolidated by numerical evidence obtained in
DMRG [258-261] and MC studies [232, 262]. This is in contrast to strongly interacting 3D Fermi
gases where the FFLO phase is conjectured to be present only in a small region of the phase
diagram, if at all. Hence, experiments with 1D Fermi gases constitute a promising approach to
finally observe the elusive inhomogeneous pairing mechanism (see, e.g., [71] for a recent review).

The study of the pairing mechanisms at work necessitates the calculation of suitable two-body
correlation functions. Within the BA framework, however, this proves to be challenging such that
numerical methods are more than just a useful alternative. In this section, we extend the CL
approach to study spin-imbalanced systems in the few- and many-body regimes. In the following,
we again start by considering the ground-state energy for various interaction strengths in order
to validate the CL approach for these systems. We then move to the main goal of this section,
namely the characterization of pairing in spin-imbalanced Fermi gases through the calculation of
the pair-momentum distribution functions and density-density correlations in momentum space.
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Figure 5.11: Ground-state energy of spin-polarized fermions as a function of attractive interac-

tion 7. (Left) Few-body CL results (blue squares) in units of n?/2 compared to exact few-body
BA calculations (dashed line). (Right) Many-body CL results in units of n3L for various values
of the particle density (squares) compared to the BA expansion in the TL (dashed line) [263].

Numerical parameters

As in our previous investigations, we integrate the Langevin equation up to trajectory lengths
of T; ~ 1000 during which we measure observables after intervals of ~ 1 “Langevin seconds”.
Averaging over ~ 5 independent trajectories, corresponding to different initial conditions, and
accounting for autocorrelation effects yields a relative statistical accuracy in the range of 1 — 2%
for all observables under consideration.

Unless otherwise noted, we employ an adaptive integration step with the target value At = 0.04,
below which the qualitative trend of all correlation functions remained unaltered. Furthermore,
the regulator is fixed to & = 0.1 which yields stable results within reasonable accuracy, as
discussed in detail above.

5.4.1 Equation of state for finite spin-polarization

As a first step, we benchmark the CL approach for spin-imbalanced systems via the computation
of the ground-state energy as a function of attractive interaction strength v < 0. In the left panel
of Fig. 5.11, we present our results for 5 1 42 | particles extrapolated to the limits At — 0 and
& — 0 in order to facilitate a precise benchmark to the exact BA solutions at the corresponding
particle content [264]. We observe excellent agreement across the entire interaction range studied,
except of the largest value at v = —2.8, for which the CL value slightly overestimates the exact
BA result. Similar to the discussion in Section 5.3.3, we attribute this deviation to the finite
extent of the box, which was only taken to be N, = 39 for this calculation.

In the right panel of Fig. 5.11, we show our results for the ground-state energy in the many-
body regime at fixed polarization of p = 0.5. In order to work at constant polarization but
varying density in the canonical ensemble, it is necessary to slightly vary the lattice sizes.
For the presented results at n = 0.5,0.4,0.25,0.2 and 0.16 we have chosen the parameters
(N, Ny + Ny) = (136,51 + 17), (130,39 + 13), (112,21 + 7), (140,21 + 7) and (125,15 + 5),
respectively. These lattice sizes are large enough to suppress finite-size effects and can be hence
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considered as sufficiently close to the infinite-volume limit. The comparison to the BA solution
in the TL [263] reveals that the CL results converge to the expected solution with decreasing
density. This is indeed not unexpected, as the BA model exactly solves the zero-range model
whereas our lattice treatment introduces some residual finite range of the interaction. Only in
the dilute limit these effects are small, which is precisely reproduced by our results.

The above analysis verifies the applicability of the CL method in the case of general spin-
imbalances for attractive coupling, at least for ground-state energies. Motivated by this agreement
with BA results, we now turn to the discussion of correlation functions for the spin-polarized 1D
Fermi gas.

5.4.2 Singlet pairing in spin-imbalanced 1D Fermi gases

In order to investigate the pair-formation in spin-polarized systems we compute the on-site
pair-density matrix

pru(@,2') = (Bl (2)B] (20, (0 )y (), (5.42)

which was already introduced in the discussion of spin-balanced systems in Section 5.2.4. The
above quantity encodes information on singlet pairing, i.e., the formation of 7]-molecules. For
the study of other instabilities, such as triplet pairing of spin alike particles or charge-density
waves, alternative two-body correlation functions need to be computed (see, e.g., [260]).
Regardless of the exact nature of the instability, true long-range order in 1D systems is destroyed
through “energetically cheap” long-wavelength fluctuations. Nevertheless, these systems may
feature quasi long-range ordering which manifests itself through polynomially decaying correlation
functions instead of an exponential decay. The strength of a particular ordering is then described
by the asymptotic behavior of the corresponding correlation function, which follows a power law
with the correlation coefficient o implicitly defined as

pr(m,2") oc |z — /|7 (5.4.3)

The leading instability is reflected by the smallest exponent a. Stated differently, the system
will exhibit the ordering pattern according to the mechanism whose correlation function decays
slowest. In spin-balanced Fermi gases, it was found that singlet paring is the dominant instability,
which is in line with our discussion in Section 5.2 (see also [72, 265]).

Using BA techniques [260], it was shown that the formation of 1|-pairs is also the preferred
ordering mechanism in the presence of spin imbalance across essentially the entire parameter
range.” The mismatched Fermi surfaces cause the particles to pair at a non vanishing center-of-
mass momentum given by

As a consequence, the spatial correlation functions display spatial oscillations such that their

SCompared to the balanced case, the singlet-pairing correlations decay faster in spin-imbalanced systems.
Formally, this is true even for infinitesimal polarization and described by a discontinuous jump of 1/2 in the
correlation coefficient a(p) at p = 0. For even larger values of p, a(p) was found to decrease slightly with increasing
polarization [260].
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Figure 5.12: (Top) On-site pair-density matrix for systems at fixed density of n = 0.4 and
polarizations of p = 0.0,0.25,0.5 and 0.75 (from left to right) as a function of r = |x — 2’|. The
dashed lines represent cubic spline interpolations. (Bottom) Pair-momentum distribution in the
first Brillouin zone for the same system. The dashed shaded area represents the corresponding
noninteracting pair-momentum distribution. (Inset) The position of the off-center peak as a
function of polarization.

asymptotic behavior is given by

| cos(g|z — ')
|x — _’B’|0‘(p)

pry (T, 2") o , (5.4.5)
with the polarization-dependent correlation coefficient «(p). Such an oscillating behavior of the
pair-density matrix, which may be related to a spatially varying order parameter, is the signature
of FFLO-type pairing, as already discussed in Section 1.3. For a more detailed discussion
see, e.g., [265].

On-site pair-density matrix

In the top row of Fig. 5.12, we present our many-body results for p; (x,z”) at a density of n = 0.4
and at various polarizations sufficiently close to the TL. The leftmost column represents the
balanced system, which shows a monotonic decay towards large spatial separation r = |x — z’|.
The light modulation should not be confused with the spatial inhomogeneity of the order
parameter. It is rather a residual effect that originates from the kinematically possible pairing at
non-zero center-of-mass momenta even in the spin-balanced case. The effect is expected to fade
out with increasing interaction.

In the second, third and fourth column of Fig. 5.12, spin-imbalanced systems with p = 0.25,0.5
and 0.75 are shown. With growing polarization the spatial fluctuation of p;; become more
pronounced, in accordance to Eq. (5.4.5). The nodes of p,| have in fact an intuitive physical
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interpretation: The excess fermions tend to reside near the zeros of the spatially oscillating order
parameter, which, loosely speaking, reflects the locally vanishing energy gap [265]. Note that
the minima of the oscillating correlation function should drop to zero. The finite resolution of
the lattice, however, introduces a slight deviation from this behavior. Nevertheless, our results
for the on-site pair-density matrix are in excellent agreement with the expected behavior for
FFLO-type pairing.

Pair-momentum distribution

To learn about pairing in the system, it is very instructive to study the pair-momentum distribu-
tion n, |, defined as the Fourier transform of the on-site two-body density matrix, see Eq. (5.2.20).
It quantifies the likelihood of finding a pair with a given momentum in the system, or in other
words, characterizes where in momentum space the on-site pairing between up and down particles
is most likely to take place. The quantity was discussed in Section 5.2 for balanced Fermi
gases, where it was shown to be peaked at vanishing momentum. The hallmark of FFLO
pairing are off-center peaks in this quantity, which indicate the formation of pairs with non-zero
center-of-mass momentum given by Eq. (5.4.4).

In the bottom row of Fig. 5.12, we show the pair-momentum distribution n;, for the same systems
as before. The leftmost column displays again a strongly peaked behavior at £ = 0, as expected
from our previous calculations. The quantity is analogous to the scenario studied in Fig. 5.4,
however, at larger lattices and particle content.

The situation changes as soon as we turn to polarized systems. Immediately upon turning on a
finite spin imbalance we find peaks in the pair-momentum distribution at k # 0 as a consequence
of pairing across incommensurate Fermi surfaces. The position of the off-center peaks follows the
linear trend expected for FFLO-type pairing. This can be seen in the inset of Fig. 5.12, where
we plot the dependence of the peak positions as a function of polarization. This type of pairing
is observed for all polarizations studied, indicating the absence of a “critical polarization” in 1D
above which singlet pairing ceases to be the leading instability. This finding is in agreement with
earlier numerical studies [260, 262].

Shot-noise correlations

Besides the two-body correlation functions presented above, density-density correlations, also
referred to as shot-noise correlations, provide a valuable tool to probe the pairing mechanism
in ultracold atom systems [214]. Experimentally, the quantity is accessible through statistical
analysis of the measured spin-selective momentum distributions of the interacting system, which
are proportional to the spatial density distributions after the trapping potential has been
switched off.

We define the density-density correlation function in momentum space as

Go’o" (k, k/) = <(57A'Lk70. (S'FLk/’o./>

= <ﬁk,a ﬁ’k/,a/> - <ﬁk,a> <ﬁ’k’,o">’

(5.4.6)

where 67, , denotes the fluctuations of the single-particle momentum distribution about its mean
value. Although we will focus on spin-resolved density-density correlations in the following, we
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Figure 5.13: Density-density correlation function G (k;, k) for a system of N =211 +5 |
particles. The direction along the diagonal defines the center-of-mass momentum k., of a pair
whereas its orthogonal direction defines the relative momentum k.. The two dashed gray lines
show lines of constant k., = +¢ which include the points at opposite Fermi momenta (marked
with black circles).

point out that one could also study the total density-density correlation function
Giot(b k) =G oo (k) (5.4.7)

and extract essentially the same information about pairing in the system.

The calculation of this quantity allows us to study the internal momentum structure of a bound
pair of fermions in our system. The two momentum space coordinates (k + k’)/2 and k — &k’
may be interpreted as the center-of mass and relative momentum of the two fermions in a pair,
respectively, see Fig. 5.13. To understand the quantity itself, we may picture it as the covariance
matrix of the single-particle momentum distributions n (k) and n, (k). Positive values of
G, (k,k") mark situations where high (low) values of n (k) occur along with high (low) values
of n,/(k"). Negative values, on the other hand, correspond to the opposite situation, where
high (low) n, (k) occur along with low (high) n, (k). The two cases can physically be identified
with particle-particle and particle-hole correlations, respectively. Within this picture, it is also
straightforward to see that the density-density correlation function equals zero for noninteracting
systems, as the two single-particle distributions are then statistically independent.

We show in Fig. 5.14 the density-density correlation functions for a variety of polarizations at
the total particle number N, + N = 26. The lattice size is fixed to N, = 64, resulting in a
constant total density of n &~ 0.41. In the top left plot, we show the balanced system, consisting
of N, = N, = 13 particles and we observe the expected positive peak at the momentum space
coordinates (+kp 4, Fkp ). Since the Fermi momenta for the two species coincide in this case,
the peaks occur on the anti-diagonal and thus indicate pairing with a center-of-mass momentum
of ¢ = 0. This is the expected BCS-type behavior for balanced Fermi gases and is in line with
our discussion of the pair-momentum distribution above.
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Figure 5.14:  Density-density correlations according to Eq. (5.4.6) for systems of (N;, N|) =
(13,13),(15,11),(17,9),(19,7),(21,5) and (21, 3) from top left to bottom right. Positive (nega-
tive) correlations are indicated by red (blue) color coding, white indicates no correlation.

For non-zero polarizations, we can clearly see a deviation from this behavior as the peaks shift
outwards from the central diagonal line by an offset of |g|. Still, however, we can clearly observe
a formation of sharp peaks around the opposite Fermi points which constitutes a pristine signal
of FFLO-type pairing.

Another interesting feature is the “checkerboard” pattern that separates the k — k’ space into
segments of positive and negative correlations at the intersection lines of the Fermi surfaces. By
the statistical argument from above, we expect 4 particle-hole like areas with negative correlation
along with 5 particle-particle (or hole-hole) regions with positive correlation. Clearly, this is
what we observe in our numerical data and this picture is in agreement with the observations
in [260]. We note here that, for the balanced case, the checkerboard structure washes out with
increasing interaction strength while it is extremely stable in the spin-imbalanced case, indicating
the preservation of the respective Fermi surfaces, at least for the interactions studied here.

Numerical challenges at large momenta

A word of caution is in order regarding the high-momentum part of the presented correlation
functions: Statistical fluctuations cause the distributions of the sampled observables to decay
only polynomially towards the tails. As discussed in Section 5.3.3, this could lead to biased
expectation values in the case of excessive fluctuations. Near the Fermi surfaces, where most
of our physical discussion takes place, the fluctuations appear to be under control, allowing a
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qualitative discussion of the associated effects.

Nevertheless, an investigation of this matter is necessary to rule out any systematic bias stemming
from the numerical treatment. Interestingly, the same shortcomings were observed in the HMC
treatment, implying that the issue does not originate from the complexification of the auxiliary
field and the associated potential formal issues (see Section 4.5.3). As remarked earlier, a likely
culprit could be an overlap problem between the trial wavefunction, which we take to be a
Slater determinant, and the true ground state of the system. In this regard, a finite-temperature
treatment should mitigate the issue as such an approach does not rely on the use of trial
wavefunctions but rather considers the full single-particle basis (hence, the higher numerical
effort). First tests indeed suggest the validity of this interpretation and the obtained correlation
functions at T' > 0 are free of excessive noise, even in the large momentum tails. A straightforward
one-to-one comparison to the ground-state results, however, requires particle projection to fixed
particle number since the finite-temperature simulations are presently performed in the grand-
canonical ensemble. Alternatively, more sophisticated trial wavefunctions, such as a BCS-type
ansatz, should improve the situation with the benefit of staying at T' = 0, i.e., circumventing
the need for particle projection. Both approaches, however, are beyond the scope of the present
thesis and are deferred to future studies.

5.5 Mass- and spin-imbalanced systems

Having treated mass-imbalanced and spin-polarized Fermi gases separately, we now proceed with
our investigation of imbalanced 1D Fermi gases by combining these two deformations. Although
purely spin-imbalanced 1D Fermi gases have been under intense investigation in the past, the
combination with unequal masses remains surprisingly scarce in the literature, not least due
to the increased complexity as a consequence of a reduced symmetry. Here, we investigate the
effect of unequal masses of the two fermionic species on the pairing structure of spin-imbalanced
systems. A question of particular interest is the fate of the FFLO-type behavior in the presence
of a finite mass asymmetry.

To quantify the mass asymmetry we use the mass ratio
K =m/m, (5.5.1)

as opposed to the discussion in Section 5.3, where the relative mass imbalance m was used.
Positive (negative) values of m then correspond to kK > 1 (k < 1), respectively. In contrast to the

investigation above, the physical results are not invariant under the transformations x — £+

and p — —p separately. The combined transformation (x,p) — (k1

,—p), however, again leaves
the results unchanged. Without loss of generality, we always assume p > 0, such that the up
component is always the majority species. Moreover, we fix the mass of the lighter species
to m = 1 such that the total mass, and thus the reduced mass, is not constant for varying values

of k.

A meaningful comparison of systems associated with different mass ratios x requires to identify a
scale which is kept fixed to the same value in all systems. Unlike in the purely mass-imbalanced
systems discussed above, where we operated at constant total mass M = m, + m, we shall
keep the two-body binding energy e fixed in the following discussion. From the solution of the
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Figure 5.15: Pair-momentum distribution for N =17 1 +9 | particles on a lattice of N, = 64
sites and 4 = —2.0. (Left) Heavy-majority systems with mass ratios x = 1.0, 2.0, 5.0,10.0. (Right)
Heavy-minority systems with mass ratios x = 1.0,0.5,0.2,0.1.

two-body problem we obtain the binding energy as

ep = —%f (5.5.2)

where m, is the reduced mass which is related to « via

mym 1
m, = s =m, n =my . (5.5.3)
my +m 1+k 1+ &k

Analogously to the discussion above, we define the dimensionless coupling constant

N =ym 7, (5.5.4)

which reduces to the definition in Eq. (5.1.2) for the mass-balanced case.’ Since the effect of the
mass imbalance is already incorporated at the two-body level, any residual effect that is observed
by varying k at constant 4 must originate from many-body physics.

The combined spin and mass asymmetry leads to two distinct physical possibilities: more particles
of the larger mass (k > 1), referred to as heavy majority, or more particles with the smaller
mass (k < 1), called heavy minority. As we shall see below, these different scenarios lead to
physically distinct pairing patterns.

Pair-momentum distribution

As in the previous section, we start our investigation by computing the pair-momentum distri-
bution n,, (k, k") according to the definition in Eq. (5.2.20). The quantity is shown in Fig. 5.15
for a system of N = 17 1T +9 | particles and a variety of mass imbalances. We observe that the
pair-momentum distribution is largely independent of x and, most importantly, no variation of
the pairing-peak position is apparent. This indicates the stability of FFLO-type correlations
with finite center-of-mass pairing for all mass imbalances considered here. In both cases, heavy
majority and heavy minority, the mechanism does not necessarily imply that pairs are only found
at ke, = +|kp 4 — kg |- Other combinations of pairs at k., # +q are kinematically possible

5Note that m, is dimensionless in our units.
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but the ones at the FFLO-momentum are most likely to be present. As a consequence of the
negligible variation of the pair-momentum distribution, the spatial modulation of the order
parameter remains effectively unchanged. The discussion of our results for this specific particle
configuration carries over to other values of the polarization, where the same qualitative trends
have been observed.

Opposed to the above findings, several studies on the asymmetric Hubbard model, where the
mass imbalance corresponds to asymmetric hopping amplitudes, suggest the breakdown of singlet
superconductivity at some critical mass imbalance. In the spin-balanced case, a crossover to
either a charge-density wave (CDW) [266, 267] or a collapse of the heavy particles featuring a
non-uniform density [268] was proposed. For the spin-imbalanced scenario, it was argued that
FFLO-type pairing is confined to a smaller parameter regime [269] and worldline MC studies
found non-uniform density profiles for large attractive interactions and mass imbalances [238].
A possible explanation of the apparent discrepancy to our CL results might be the different
dispersion relations: While at very low densities the Hubbard model and the quadratic dispersion
are practically identical, the former flattens towards the edges of the first Brillouin zone (BZ) as
opposed to the monotonically increasing quadratic dispersion employed in this work. Consequently,
the energy cost for excitations at densities beyond the dilute regime are different for the two
models which ultimately prohibits a straightforward comparison. Moreover, the studies mentioned
for the Hubbard model have been performed at low albeit finite temperatures and some even in
the grand-canonical ensemble, which could also lead to qualitatively different behavior to the
strict zero-temperature limit. To resolve whether these studies are actually in contradiction to
our CL results, a more detailed scan of the parameter space, along with additional correlation
functions for CDW and other ordering mechanisms, is necessary. Such a study, however, is
beyond the scope of the present thesis.

Shot-noise correlations

In order to better understand the influence of mass imbalance on the pairing behavior, we again
turn to the investigation of the shot-noise correlations. In Fig. 5.16, we show our results for
the same systems as in the above discussion for heavy-majority (top row) and heavy-minority
(middle row) configurations. Although the pair-momentum distributions remain roughly the
same, we observe changes in the density-density correlation functions. Besides the regular
pairing-peak at the opposite Fermi points (;I:k;, ZFk:%), we observe the emergence of an additional
peak with increased mass asymmetry. Consistent with the observation of constant peak positions
in the pair-momentum distribution, the “spectral weight” is only shifted along lines of constant
center-of-mass momentum. This implies that merely the internal structure, i.e., the relative
momentum of up and down particles, changes with the mass ratio.

The appearance of the additional peaks may be understood through the fact that the spacing
between the energy states is reduced for the heavy component: With the same energy cost, the
heavy particle can scatter into higher lying momentum states.

Heavy majority At first, let us consider the heavy-majority scenario (top row of Fig. 5.16) in more
detail. As discussed above, pair formation happens at lines of constant center-of-mass momentum
k., = £q, which corresponds to k" = k £ ¢ (dashed lines in the lower left panel of Fig. 5.16) and
reflects the positions of the two maxima in the pair-momentum distribution discussed above. We
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Figure 5.16: Density-density correlations for N = 17 1 49 | particles on a lattice of N, = 64
sites and 4 = —2.0. (Top row) Heavy majority with k = 1,2,5. (Center row) Heavy minority
with x = 1,0.5,0.2. (Bottom row) Pairing of mass-imbalanced fermions in momentum space.
(Bottom row, left) Momentum plane with marked positions of the emerging peaks: regular
pairing at the Fermi surfaces (gray circle), shift of the heavy majority (blue circle) and shift of
the heavy minority (red circle). The two dashed lines correspond to k., = +¢ and shaded areas
reflect the respective Fermi surfaces. (Bottom row, center and right) Sketch of the single-particle
momentum space for the heavy-majority (bottom, center) and heavy-minority (bottom, right)
scenario. Upper lines represent the k-space of majority particles, the lower lines correspond to
the k-space of the minority species.
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Figure 5.17: Cuts in momentum space along a constant center-of-mass momentum £k, of the
pairs for the systems shown in Fig. 5.16. (Left) Heavy majority. (Right) Heavy minority.

observe peaks at <ikF,T? Fhy, 1) which mark the expected FFLO-type pairing in the vicinity of
both Fermi surfaces. With increasing r, additional peaks emerge at (+kg 4 F 2¢, Fkg | ), indicated
by stronger particle-particle correlations (i.e., deeper red coloring). For clarity, only the point
at (—kg 4 + 2¢, ky ;) is marked with a blue circle in the lower left panel of Fig. 5.16.

The lower central panel of Fig. 5.16 reveals the occurring mechanism: For large enough mass
imbalance it becomes energetically favorable to scatter with heavy particles from far below the
Fermi surface while still obeying the constraint |k, | = |g|. The sketch depicts the perspective of
the lighter particle at the Fermi surface: In addition to scatter with an up-particle at ky = —kp ;
(gray circle), there is now an increased likelihood to pair with a particle at k, = —kp + + 2 (blue
circle). Note, however, that the center-of-mass momentum of such a pair jumps from k., = —q
to k., = +¢, which corresponds to switching between the two dashed lines in the lower left panel
of Fig. 5.16.

Heavy minority Turning to the heavy-minority scenario (middle row of Fig. 5.16) reveals
a similar picture with reversed role of the majority/minority particles. For the same mass
imbalances as before, we now observe additional peaks at (+kp 4, £kp | F 2kg ;). The situation is
depicted in the lower right panel of Fig. 5.16, where scattering of a light majority particle at its
Fermi surface is now favored to happen with either a heavy-minority particle at its Fermi point
(gray circle) or far above it (red circle). Similar to the heavy-majority case, the latter scattering
option becomes energetically more favorable with larger mass ratio since the energy states may
be reached more easily. The corresponding peak in the shot-noise correlation function is marked
with a red circle in the lower left panel of Fig. 5.16.

A more detailed illustration of the buildup of the additional peaks for both scenarios is shown
in Fig. 5.17, where cuts along the line of k_, = —q for heavy-majority (left) and heavy-minority
(right) systems are plotted as a function of the momentum k£ of the up-component. In the former
case, the emergence of a second peak at k = —kp 4 + 2kp | is clearly visible. For heavy-minority
systems, the additional peak at k, = kg , is apparent. A mirrored but otherwise identical picture
applies for k., = +¢, which is not shown in the plot.

As already discussed above, it appears that the mass imbalance does not destroy the FFLO-type
behavior and pairing still predominantly happens with |k, | = |g|. If this condition were to be



104 CHAPTER 5 — FERMI GASES IN ONE DIMENSION

broken, other momentum states than the ones corresponding to the above-discussed peaks would
be populated. This, in turn, would cause the oscillations of the order parameter to wash out,
as more modes with k # +¢ would interfere with the oscillatory behavior. As a consequence,
the pairing gap would not vanish periodically, which implies that the excess fermions cannot
minimize their energy by residing in regions with a locally vanishing pairing gap.

While this behavior may be explained physically, the numerical issues discussed in Section 5.5
could interfere with this interpretation, particularly at large momenta. Although unlikely, the
effect could be a statistical anomaly and further checks, including larger system sizes, are needed
to fully resolve the situation.

5.6 Excursion: higher-order CL integration

All our CL results for the above discussion of 1D Fermi gases have been computed with an
integration scheme corresponding to Euler-Maruyama (EM) discretization of the Langevin
equation. As discussed already in Section 4.4.2, this strategy introduces a systematic bias that
scales linearly with the integration step At and the slope typically increases with the strength of
the bare interaction strength. Since the EM integration scheme is often sufficiently accurate, and
also due to its straightforward implementation, it remains the predominant choice for CL studies
despite the existence of higher-order integration schemes.

For a CL study of the SU(3) spin model, on the other hand, higher order integration was found
to be a crucial ingredient in order to reach sufficient accuracy at reasonable computational
cost [185]. The applied integration scheme was introduced in Eq. (4.4.21), which is expected
to introduce a systematic error that scales with At:. While the improvement seems relatively
modest in terms of the computational complexity, it was found that the leading coefficient is
strongly suppressed such that finite step size corrections seem to be eliminated altogether, at
least for the specific model and parameter values studied.

Motivated by the almost total suppression of discretization effects, we here present numerical
tests for the higher-order integration scheme in Eq. (4.4.21). The improved integration strategy
requires to evaluate the drift three times, thereby increasing the numerical effort at constant At
by that factor. To combine this strategy with the adaptive step size introduced in Section 4.5.5,
we define the improved drift

Kip = — (K[X™] + 2K [p™]), (5.6.1)

such that the step size is rescaled like

At
max;, |K1mp[¢(n)” '

1

At = (5.6.2)

As opposed to EM integration, some random noise already enters the improved drift term which
is used to rescale the step size in the above expression. Note also that the regulator term is
included in each evaluation of the drift function K|[¢].
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Figure 5.18: (Left) Ground-state energy as a function of the integration step At. EM integration
(blue squares) and improved integration (red circles) are compared to the HMC result (green
band). Dashed lines are polynomial fits of the appropriate order. (Right) Regulator dependence
of the ground-state energy extrapolated to At — 0. In both panels, the green HMC band reflects
1o uncertainty.

5.6.1 Canonical ensemble in the ground state

We compare the two integration schemes for a mass-balanced system of N =5 1 +5 | particles
at a spacetime lattice of N, x N_ =40 x 100 and the moderate attractive interaction strength
v = —2.0. The choice of these parameters allows a comparison to results obtained with the HMC
algorithm. In order to precisely filter out the systematic effects we have accumulated 2 x 10°
samples per data point. Results for the ground-state energy in dependence of the step size At
are shown in the left panel of Fig. 5.18 for a regulator strength of £ = 0.1. An extrapolation to
the limit At — 0 for both CL integration algorithms displays excellent agreement with the HMC
results. While the results from EM integration deviate already for relatively small values of At,
the improved values stay roughly within one standard deviation of the HMC results (reflected by
the green band) for all values of At under study.

In the right panel of Fig. 5.18, the regulator dependence of the At — 0 extrapolated ground-state
energies is shown. We observe a delicate systematic difference between the EM and improved
results although the error bars overlap in some cases and thus the results may be considered
equivalent for all practical purposes. For sufficiently small values of &, all results are observed
to lie within one standard deviation of the HMC results, regardless of the integration type.
Remarkably, the qualitative behavior of the ground-state energy as a function of £ does not seem
to depend on the employed integration algorithm.

5.6.2 Grand canonical ensemble at finite temperature

To complement the investigation of the ground state, we have also implemented the higher-
order scheme for finite temperature calculations and tested its behavior across a variety of
interaction strengths and densities. The latter is dictated by the parameter Su, where [ is the
inverse temperature and u is the chemical potential. To compare the integration schemes we have
accumulated 10* decorrelated samples per data point at a spacetime lattice of N, x N = 41 x 160.
As above, we have fixed the regulator to £ = 0.1 and kept the inverse temperature at the moderate
value of g = 8.0.
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Figure 5.19: Comparison of EM (blue symbols) and improved (orange symbols) integration
schemes for various couplings and densities. The values at At < 0 depict results extrapolated
to At — 0 with the propagated statistical errors. Blue shaded bands are the errors of the
extrapolated values of the EM scheme. Solid lines are polynomial fits to the numerical data.

The results for the density at various values of By and the dimensionless coupling A = /B¢
are shown in Fig. 5.19. To indicate the variation of different initial conditions, two lines per
algorithm and parameter set are shown (marked with similar colors). The extrapolated results
are shown at negative values of At for clarity and are found to agree in all cases within statistical
uncertainty.

The conclusion regarding the dependence on the integration step largely carries over from the
ground-state investigation: While results obtained with the EM integration scheme scale linearly
and the slope strongly increases with the coupling A (left to right at constant Su), the dependence
on At of the improved results remains relatively mild. The improved results deviate from the
error band of the extrapolated EM values (blue shaded bands) only beyond large values of
At = 0.35 for the strongest interactions considered here. Similar to the EM values, the improved
results show an increase of the scaling prefactor, however, even in the strongly interacting regime
at A = 3.0 the dependence is relatively mild.

This analysis essentially implies an elimination of finite step bias within practical statistical
accuracy. Rather than resorting to tiny integration steps in order to reach sufficient accuracy, it



5.7 SUMMARY & OUTLOOK 107

seems to be enough to work at a relatively large steps without the need of extrapolating At — 0.
This drastically reduces the computational effort for both ground-state and finite-temperature
calculations.

5.7 Summary & Outlook

The goal of the present section was to fully characterize the lattice approaches developed in
the first part of this thesis in a concrete physical setting. While the HMC algorithm is an
established tool in many branches of physics, the present study of 1D Fermi gases is among the
first systematic applications of its extensions to imaginary asymmetries (iIHMC) as well as the
CL approach in the context of nonrelativistic fermionic systems.

As a first step, we have investigated the crossover from few to many fermions via the HMC
approach in order to identify appropriate numerical and physical parameter regimes, which
carry over to all lattice approaches applied in this thesis. Concretely, we have found excellent
agreement with BA expansions at weak and strong coupling and have showed that the lattice
treatment allows for a suitable computation of one- and two-body correlation functions. Most
notably, the pair-momentum distribution was computed in the balanced case, and it was found
that the formation of zero center-of-mass momentum pairs is favored as the attractive interaction
increases, in accordance with the literature. This quantity later played an important role in the
characterization of pairing in spin-imbalanced systems, as it shows clear signals of FFLO-type
pairing in the form of off-center peaks.

After setting the methodological stage for our lattice treatment, we have investigated fermionic
systems with unequal masses. The reduction of symmetry inhibits the efficient use of plain
HMC as a consequence of the sign problem and also renders BA techniques inapplicable. To
surmount the sign problem we employed the iHMC and CL approaches which displayed excellent
agreement for attractively interacting systems up to mass-imbalances of m < 0.6, beyond which
results obtained through the iHMC approach exhibit large uncertainties. Remarkably, the
CL values do not suffer from such a shortcoming and the method seems to be applicable for
systems with arbitrary mass imbalance. While these results have been confirmed by a sign-free
implementation of the worldline algorithm [122, 123] on the attractive side, our values at large
repulsive interactions have been shown to be problematic. This shortcoming did indeed not come
unexpected, as the histogram of the sampled ground-state energies displayed fat tails which cause
biased expectation values in this parameter regime. Our determination of the EOS for attractive
interactions marks the first systematic study of 1D fermions with contact interaction for general
mass imbalances.

The success of the CL method for attractively interacting fermions allowed us to subsequently
extend our study to spin-imbalanced systems. Since the mass-balanced case is again integrable,
we were able to benchmark against BA results in both the few- and many-body sectors and
found excellent agreement. Despite the applicability of the exact BA for purely spin-imbalanced
systems, correlation functions are challenging to compute within this approach which necessitates
numerical treatment. We have shown that the CL method is able to accurately compute two-body
correlation functions and found that FFLO-type pairing is the dominant instability for all values
of the relative polarization under study. This finding, which is supported by the occurrence of
off-center peaks in the pair-momentum distribution, is in accordance to earlier studies on the
subject [260]. An exciting possibility to resolve the internal structure of the fermionic pairs was
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shown to be the computation of the density-density correlations in momentum space, which
feature distinct imprints of FFLO-type pairing. These quantities were also found to be in excellent
agreement with earlier results obtained by the means of DMRG [259, 260] and are in principle
accessible in experimental setups [214].

As a final step, we have combined both asymmetries to study the influence of mismatched particle
masses on the FFLO pairing pattern. While the pair-momentum distribution was found to be
largely unaffected by the mass imbalance, the shot noise revealed distinct changes in the pairing
pattern. Interestingly, FFLO-type behavior was found to prevail for all mass-imbalances under
study. However, the relative momentum of the pairs changes as higher momentum states become
energetically accessible. To the best of our knowledge, this type of pairing was observed for the
first time in this study. It will be interesting to see if these predictions withstands experimental
verification.

Our extensive study of 1D imbalanced Fermi gases shows the excellent applicability of stochastic
lattice approaches, and most specifically of CL, in the context of low-dimensional ultracold Fermi
gases. Benchmarks to known results in the literature have shown the accuracy and reliability in
many cases and faulty behavior has been found to be accompanied by distinct imprints on the
histograms. This yields an optimistic outlook for the application of CL in more diverse studies
otherwise plagued by a sign problem and, most promisingly, the extension to larger spatial
dimensions, as also discussed in the subsequent chapter.

As remarked already above, the CL treatment of Fermi gases with large repulsive interactions
yielded polynomially decaying histograms which could be the sign of a formal failure of the CL
method. A similar issue was found for the tails of one-body correlation functions in momentum
space, which ultimately limits the predictive power of the CL in this regime. A necessary further
step in the development of CL for ultracold Fermi gases is therefore the detailed investigation of
this shortcoming by clarifying the exact nature of the issue. Possible strategies involve the use of
improved trial wavefunctions, finite temperature calculations, alternate Hubbard-Stratonovich
transformations, and, most importantly, stabilized imaginary time propagation. We shall briefly
elaborate on these techniques in the general outlook in Chapter 7.

With a more sophisticated implementation of the above described lattice approaches it should
then become possible to study the correlation functions of various ordering mechanisms in
more detail. In particular, a study of the dependence of the different correlation coefficients
on polarization and mass asymmetry is of interest as this helps to unambiguously identify the
leading instability.

The perhaps most exciting possible avenue pursued in this chapter is the study of so-called
shot-noise correlations, which allow a close look at the pairing structure in 1D Fermi gases. An
extension to higher dimensional systems is certainly feasible and could be fruitful in the discussion
of exotic superfluid phases in the phase diagram of the spin-polarized UFG, as discussed in the
upcoming chapter.



6 The spin-polarized unitary Fermi gas

“Bei diesem Blatt kann ich frohlocken und maochte
ewig weiterzocken.”

)

Johnny Firpo in “Zwei sind nicht zu bremsen’

Without a doubt, one of the most intensely studied many-body systems in recent years is the
unitary Fermi gas. It is situated right “in the middle” of the BCS-BEC crossover and corresponds
to the regime with the strongest possible s-wave interaction while still satisfying the unitarity
of the scattering matrix. As a result, Fermi gases exhibit a scale invariance in this regime
and it is possible to write any thermodynamic quantity as a dimensionful factor (typically its
noninteracting value) multiplied by a universal dimensionless scaling function which only depends
on temperature and density [270]. For example, the energy of the UFG may be written as

E = Exg fp(n/ke.T/Ty). (6.0.1)

Such a relation holds irrespective of the nature of the thermodynamic phase such that the
thermodynamic behavior at unitarity is described by only a few universal numbers. Mapped to
experiments, universality implies that the same function f; must be measured regardless of the
fermionic atom species which indeed has been confirmed in a range of experiments over the past
two decades (see, e.g., [20, 35]).

In this chapter we explore the thermodynamics of the UFG in the presence of a finite spin
imbalance. At low temperatures, when the system is superfluid, a large enough polarization
will destroy superfluidity, often referred to as the Chandrasekhar-Clogston limit [29, 30], as
discussed in Chapter 1. Precisely how that happens, and what other exotic superfluid phases
may be traversed in the process, has remained a controversial topic. Part of the challenge in
answering such questions is that the UFG (not unlike QCD and many other systems) is a strongly
correlated many-body system lacking a small parameter and therefore can only be tackled with
nonperturbative methods such as the CL approach.

To discuss the physics of the UFG, our main quantity of interest is the density equation of
state (EOS), which is a direct output of our numerical calculation in the grand canonical ensemble.
In the case of different chemical potentials for the spin species, the densities of up and down

“magnetic” properties

particles will generally differ, which opens the possibility to study the
of the system. In addition to a precise density equation of state, we obtain a variety of other

thermodynamic quantities through the use of thermodynamic relations and compare them to
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other approaches wherever available. A central tool in this regard, at least at high temperatures,*

is the virial expansion, which gives a power series representation of the partition sum at low
fugacities. We shall demonstrate that all our quantities agree with the virial expansion in the
expected limit and thus survive an important sanity check.

To further validate the numerical approach, which we have applied to the UFG for the first time,
we perform an extensive benchmark for the spin-balanced gas. In this limit, precise experimental
values have been obtained [271] and, since the balanced system does not suffer from a sign
problem, exact calculations from other stochastic schemes are available [152, 272-275]. Beyond
the balanced limit, however, benchmark values at finite temperatures are relatively scarce since
MC studies face a severe sign problem. The problem was nevertheless attacked via the standard
worm algorithm combined with re-weighting [276, 277] which shed some light on the critical
temperature in the presence of slight spin asymmetry. Besides the mentioned MC study, there are
other results obtained via mean-field treatment as well as more sophisticated methods albeit with
potentially uncontrolled approximations (see [57-59] for reviews). The here presented ab initio
results mark the first unbiased, experimentally testable predictions for a range of thermodynamic
properties of the spin-polarized UFG at finite temperature.

6.1 Model, scales & scattering on the lattice

Fermions in the unitary limit are governed by a Hamiltonian with a nonrelativistic dispersion
relation and a zero-range interaction,

2172
ﬁ:/d% i) (— ZZ ) b, <x)—g/d3x@(x)m(x), (6.1.1)
which corresponds to the three-dimensional version of the model introduced in Eq. (2.1.1). Since
we must discretize the problem for our numerical treatment, the coupling g needs to be tuned
such that our lattice theory reproduces the desired scattering properties. This can be done by
first considering the so-called finite-range expansion [278] which allows us to write the low-energy
scattering phase shift of sufficiently short-ranged interaction potentials in terms of the momentum:

pcotd(p) = —2 + %refpr + O(p*). (6.1.2)
For the unitary point, where the scattering length a diverges and the effective range r tends to
zero, this yields a phase-shift of § = 7 independent of the (small) momentum.
The above expansion holds for continuous systems in the limit of infinite volumes. For finite
system sizes in the continuum, on the other hand, we may exploit Liischer’s formula [89]. Tt
relates the scattering phase shift to the energy spectrum of the two-body problem in a periodic
box of length L via

1

pcotd(p) = —

S(n) (6.1.3)

with n = % and the three-dimensional zeta function S(n) as defined, e.g., in [91]. Tuning the

1Sometimes also referred to as the Boltzmann regime.
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phase shift to unitarity, i.e., 6 = 7, then corresponds to finding the roots of the zeta function.?
We use the root closest to the origin, located at n? = —0.0959007, as it relates to the smallest
value of the coupling that obeys the unitarity condition and therefore minimizes lattice spacing
effects.

In order to match the lattice theory to the continuum, we must solve the Schrédinger equation of
the two-body problem on the lattice. For a zero-range potential, the relation between coupling
and energy reads

1 1 1
-=—= —_— 6.1.4
g L3 Z E—2¢;’ ( )
k
where the sum is over all momentum states k on the lattice and £, = i%z is the dispersion
relation. The coupling is then obtained by inserting the energy E = W(%”)Q evaluated at a

root of S(n). To minimize cutoff effects we evaluate the sum for a large Value of L and find a
value of g &~ 5.14435 for the unitary point in our formulation. More details on this procedure
may be found, e.g., in [98, 102, 279).

Note that the above prescription only matches the lowest energy value of the lattice problem
to the continuum. Higher energy states will generally differ and thus the exact physics is
only reproduced in the very dilute limit where only a small number of momentum states are
occupied. To remedy this issue, parameters additional to the coupling have to be introduced and
appropriately tuned. Such an improved strategy has been applied before [91, 93, 107], however,
it is not pursued in this thesis.

6.1.1 The grand canonical ensemble

To study the thermodynamics of the UFG, we consider the grand-canonical partition function
2 = Tr[e PH-mN-m )] (6.1.5)

where 8 = 1/T'is the inverse temperature and p,, is the chemical potential coupled to the number
operator N, for the species 0. Through the variable transformation

p= %(MT + 1) (6.1.6a)
h = %% ) (6.1.6D)

we can rewrite the partition function as
2 = Tr[e BH-#N+hM)] (6.1.7)

where p is the average chemical potentlal and h is the relative chemical potential mismatch
Coupled to the total number operator N = NT + N |, and the so-called magnetization operator
M = NT N |, respectively. Often, h is referred to as the effective Zeemann field or merely
magnetic field since it causes a spin-selective shift of the Fermi surfaces around the average

2The evaluation of S(n) might be tricky due to numerical cancellations. A useful technique may be found in
the appendix of Ref. [91] along with tabulated values of the roots of S(n).
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Figure 6.1: Sketch of the grand-canonical parameter space 1/5u vs. h/u. The lower left corner
corresponds to large chemical potential, i.e., low T /Ty, where the superfluid phase is present.
(Left) Lines of fixed Sh. Varying Su implies moving along the dashed lines. (Right) Lines of
fixed Bu. Varying Sh corresponds to moving along horizontal lines.

Fermi surface, as already discussed in the context of the CC limit in Section 1.3. Without loss of
generality, we set h > 0 which implies that the up component is set to be the majority species.?
In Fig. 6.1 scans through the parameter plane 1/8u vs. h/p at fixed values of Sh are depicted to

guide the reader through our studies.

6.1.2 Units & scales

In the following, all results are presented in dimensionless form. As remarked above, computations
are carried out in the grand-canonical ensemble which implies fixing the parameters p and h
to obtain the average density as a result of the calculation. Due to the units we have chosen,
temperatures as well as chemical potentials carry the units of L? which we exploit to define the
dimensionless parameters Sy and Sh to fix the physics.

A characteristic length scale in the system is given by the thermal de Broglie wavelength
Ap = /273. In order to avoid strong discretization and finite-size effects, other parameters must
be chosen such that,

{ KAy < NI (6.1.8)

where N, is the number of spatial lattice sites per dimension. The above expression encodes part
of the computational challenge when moving to low temperatures: due to the increased thermal
wavelength, the box size needs to be scaled appropriately which renders the computation more
costly. Luckily, however, Ay grows only with /3 such that sufficiently low temperatures may be
reached within reasonable computational effort.

Characteristic energy scales in the system are given by the Fermi energies of the spin species
EF,o = %k%o, with the Fermi momenta

kp o = (6m%n,)1/3. (6.1.9)

3Note that this is only permissible in the case of equal spin species. Otherwise, for instance in the case of a
mass imbalance between the species, the situation for h and —h correspond to different physical scenarios.
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Note that our units imply e = T} such that the Fermi energy may be used to rescale energies

as well as temperatures.?

Finally, all thermodynamic properties are presented in the units of the corresponding quantity
of the noninteracting gas (either in the ground state or at the corresponding temperature). A
detailed derivation of the expressions may be found in Apppendix C.

6.1.3 Numerical parameters

For the numerical determination of the EOS, a range of physical as well as numerical parameters
have to be specified. As already remarked in Section 2.3, we fix the lattice spacing to £ = 1 such
that the temporal time step AT sets the lattice units. Technically, in order to eliminate the effect
of the imaginary-time discretization, an extrapolation A7 — 0 needs to be performed. Since
the temporal discretization only yields an error on the order of A72, however, we have found it
sufficient to set A7 = 0.05 for all numerical calculations to follow, which is below the statistical
accuracy of the present study.

Moreover, we consider a fixed value of 8 = 8.0 which amounts to N. = 160 temporal lattice
sites and fixes the thermal wavelength to Ap &~ 7.09. To minimize contamination from finite-size
effects, the spatial extent of the box needs to be chosen such that Eq. (6.1.8) is satisfied. Unless
otherwise noted we chose the moderate volume V' = 113 which is sufficient to capture the physics
in a wide temperature range.

All results presented below have been obtained by averaging over three independent trajectories
of 10® samples. We refer to a sample as a measurement after the CL time evolution of length ~ 1
in Langevin time which corresponds to a variable number of actual CL updates due to the
usage of an adaptive CL step. For every trajectory, which merely reflects different initial field
configurations, the first 10% of the samples have been discarded to avoid initialization bias. All
in all, our total number of samples allows us to obtain a relative statistical error of roughly 2%.
Finally, we have checked the influence of the regulator strength on our results, which we found
to be negligible, at least for small enough values of £. In the following we use £ = 0.1 which
represents a pragmatic choice and appears to be large enough to stabilize trajectories over a
broad range of temperatures and also small enough as to avoid large bias in the final results.
The discretization of Langevin time, however, has been found to have impact on the obtained
results and therefore the extrapolation At — 0 is necessary, as discussed further below.

6.2 Data post processing & systematic error control

Before being able to discuss the thermodynamic behavior of the UFG as a function of physical
parameters, we have to address potential numerical artifacts. In the following we show the
statistical validity of our results by detailing the post processing applied to the raw simulation
data and commenting on possible issues and their implications. Subsequently, we address
systematic errors introduced by the CL treatment and extrapolate where necessary.

4The definition of the Fermi momentum of a single species in Eq. (6.1.9) should not be confused with the often
used expression for a two-component gas: kp = (372n)'/3 where n = n, +n, denotes the total density. The latter
is used in particular in studies of the balanced UFG, where it is equivalent to the above definition.
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Figure 6.2: Statistical evaluation details for the total density with the parameters Su = 2.0,
Bh = 1.2 and At = 0.04. The colors correspond to two different initial conditions, i.e., two
trajectories. (Top left) Sampled histogram on a log scale. (Top right) Autocorrelation function
and integrated autocorrelation time as a function of sample lag AN. (Lower left) Running average
with statistical error estimate. (Lower right) Error estimate as function of sample number. Solid
lines are the actual error, dashed lines are the expected N~1/2 decay from the reference point
(dot) and dashed-dotted lines are the ratio of actual error to ideal error (scale on the right).

6.2.1 Statistical evaluation & error estimation

Part of every MC calculation is the statistic evaluation of single runs at fixed parameter sets.
While plain averages are readily evaluated, some more effort has to be put forward to ensure the
validity of the values and to reliably estimate the errors. This is not only because of autocorrelation
between samples, but could also originate from more subtle effects like a distribution overlap
problem, numerical instabilities or, as in the case of CL, potential conceptual barriers of the
method. Here, we show a detailed investigation of the particle density for the parameters
Bu = 2.0, fh = 1.2 and At = 0.04 and all other parameters as discussed above. This specific
dataset serves to exemplify the quality of our data - other parameter sets are of equivalent
statistical accuracy.

A central tool to study the behavior of the simulation is the histogram of the sampled values.
The expected functional form of the distribution depends on the observable as well on the
representation and the applied algorithm and is in general unknown. Nevertheless, it is important
that the histogram is somewhat localized such that it decays quickly towards large values of the
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observable on either side. In the case of large statistical weight towards the wings® the results
suffer from slow convergence since frequent outliers increase the variance of the sampled values
which in turn reduces the statistical accuracy dramatically. In extreme cases, namely when
the distribution decays slower than a power law with exponent @ = 3, the second moment of
the distribution formally diverges and is no longer well defined. Practically, this implies that
accumulating more samples will not increase the statistical accuracy and the simulation fails
to deliver arbitrary precise measurements. We show histograms for two trajectories in the top
left panel of Fig. 6.2 and observe almost perfect Gaussian behavior which is well localized and
therefore no issues are expected.

To complement the histogram, running averages are shown in the lower left panel of Fig. 6.2.
After the first discarded 10% of the samples, the averages (lines) relatively quickly approach a
stationary value and stay, mostly, within the decreasing statistical error (shaded area). Outliers
in the histograms, which could be caused by various issues, would correspond to a sudden jump
in the running average. While single or few outliers are washed out by a sufficient amount of
samples, too frequent outliers prevent the trajectory from stabilizing and no reliable values may
be obtained.® For all parameter values studied in this chapter, outliers pose no problem and the
running averages are observed to be smooth. For increasing values of Su, however, we observe a
small number of atypical contributions which is likely caused by a singular Fermi matrix due to
the increased density in the system. It is expected that this trend becomes more severe at larger
lattices and lower temperatures, where the eigenvalues of the Fermi matrix spread beyond the
capabilities of floating point arithmetic. Consequently, numerical noise washes out the lowest lying
eigenstates. The issue may be controlled by suitably stabilizing the imaginary time propagation
via matrix decomposition (typical strategies rely on either the singular value decomposition or
the QR-~decomposition [100]). Further, we note that an ill-conditioned Fermi matrix is not the
only source of potential outliers and, specifically for CL simulations, uncontrolled excursions in
the complex plane could lead to destabilized trajectories and need to be carefully monitored, as
discussed below.

In the same way as the running average, the evolution of the statistical error is plotted as a
function of the sample number in the lower right panel of Fig. 6.2 (note the double logarithmic
scale). For large N the variance of the mean should decay as N~'/2. This is indicated by the
dashed lines, which show the ideal decay starting from a reference point at N, = 100 samples
after thermalization (indicated by the dot). We observe that the errors indeed follow the trend
with some fluctuations around it. For a frequent number of outliers, the estimated error would
level off at some plateau which sets the limit of precision that can be achieved for the observable
without resorting to an exponential increase in sample number. We do not observe such a
problematic behavior across all parameter values studied.

Finally, in order to correctly estimate the statistical error, we have to take into account the effect
of autocorrelation for which we employ the Jackknife method [115]. Additionally, we show the
autocorrelation function for the total density in the top right panel of Fig. 6.2. As we measure
observables only after a certain Langevin time has passed, the correlation between the samples is
generally rather low as can be seen from the curve. As apparent from the figure, the estimation of
the integrated autocorrelation time from the autocorrelation function is challenging and oscillates

5Large tails are also called fat tails, long skirts or Pareto tails in the literature.
6Regardless of the ability to treat single outliers, their occurrence should always be investigated as it could be
the onset of numerical problems.
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due to statistical noise. Therefore we estimate the quantity with the Jackknife method and
observe that 7, is always below ~ 4. Furthermore, 7;,, somewhat depends on the discretization
step AT as well as mildly on the physical parameter Su.

6.2.2 Imaginary parts of observables

Besides the regular statistical evaluation of Markov chain data shown above, the usage of CL
requires us to also check the imaginary parts of sampled observables. For all physical quantities,
the imaginary part needs to vanish, or at least be sufficiently small. Any deviation from that
may spoil the formal argument of the CL. method and thus marks a shortcoming of the method
for the corresponding parameter regime.

In Fig. 6.3 we show how the imaginary part of the total density evolves in Langevin time for
a system with the parameters fh = 1.2 and At = 0.04 for multiple values of Su. Across all
values, the trajectory initially starts out at a relatively large value of Im[n|, which stems from
a random start in the field space. As time progresses, we observe an exponential decay of the
imaginary part which is expected for physical results. Eventually, the decay stops and levels off
at a plateau as a consequence of the finite precision of floating point arithmetic. Naturally, we
can use the onset of the plateau as indication for a sufficiently thermalized random process. As
apparent from Fig. 6.3, the plateau occurs after ~ 200 decorrelated samples, which is a typical
thermalization time used throughout this work.

While for negative values of Bu (i.e., the virial regime) the trajectories settle at ~ 10716, which
reflects the limit set by floating point arithmetic, the magnitude of the plateaus grows as Su
is increased. Although the imaginary part is larger than in the virial regime, the magnitude is
still ~ 10719 for systems with Sy < 1.5 which is well beyond a problematic order of magnitude.
However, further increasing Su reveals potential issues as the trajectory fails to sufficiently decay
towards a stable value. Beyond fu ~ 2.5 (which roughly corresponds to the phase transition
temperature as discussed below) the decay is almost entirely suppressed and the imaginary
part, while still some orders of magnitude smaller than the corresponding real part, does not
sufficiently vanish. It is therefore expected that the CL results are compromised in this regime
as a consequence of the broken formal argument. Indeed, as discussed further below, we observe
deviation from benchmark data even in the balanced case.

Of course, the absence of a sufficient decay is a symptom of an underlying problem. The exact
reason, however, is relatively challenging to identify as there are several possible mechanisms
that could cause such a behavior. First of all, it is possible that a so-called distribution overlap
problem prevents the values from converging to a stable trajectory due to frequent outliers.
However, judging from the above discussion of the statistical evaluation for the same parameter
set, this is an unlikely root of the problem backed by the well behaved nature of the real part.
A close inspection of the trajectories in Fig. 6.3, particularly of the lower central panel (Su = 2.0),
reveals an interesting behavior: there are frequent occurrences of a large imaginary part of the
density followed by a decay back towards small values of Im[n]. This implies an occasional large
value of the drift term in the imaginary direction during the Langevin propagation and thus
possible faulty behavior as already discussed in Section 4.5.3. We observe that the number
of exceptional drift values rises with the chemical potential, i.e., with increased density in the
system. As already mentioned above, this could be a consequence of ill-conditioned Fermi
matrices which is expected to become a problem with increasing particle density. In fact, similar
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Figure 6.3: Imaginary part of the density as a function of the sample number with gh = 1.2
and At = 0.04. The colors denote two different initial values. The panels correspond to
fu =—2.0,—1.0,0.0,1.0,2.0 and 3.0 (top left to bottom right).

behavior regarding the singularity of the Fermi matrix for increased system sizes and densities
was observed for HMC simulations of the balanced UFG without a stabilization procedure [98].
Additionally, an extensive analysis of the issue in ground-state calculations, which we have
performed in a separate project, displays essentially the same features and thus further suggests
this mechanism as the likely culprit. It is therefore expected that a proper stabilization of the
imaginary-time propagation will diminish this shortcoming. However, the implementation and
proper testing of the procedure is beyond the scope of the present thesis and deferred to a future
study on the topic.

Although the above explanation yields a consistent picture, it should be noted that the CL
method may generally fail in some parameter regimes. Without first eliminating other possible
issues, however, it is challenging to conclusively identify whether this is the case for the present
system or not.

6.2.3 Finite-volume effects

Our procedure of evaluating the path integrals for the UFG involves discretizing spacetime using
a (3+1)-dimensional lattice. As already remarked in Section 2.3, this imposes certain limitations
that need to be addressed in order to obtain physically correct results.

First of all, the box extent L = N_¢, which sets the IR cutoff, should be larger than any physical
length scale in the system. In particular, L should exceed the thermal wavelength Ap leading
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to the requirement of large lattice sizes at low temperature. Moreover, at the superfluid phase
transition, the correlation length diverges and, even below the phase transition, the dynamics
are then governed by massless excitations (associated with the appearance of Goldstone bosons).
This further strengthens the need for large lattices in this regime.

The lattice size, however, is not the only source of systematic error. Indeed, simply increasing
the lattice size by itself would not be enough to ensure accuracy at low temperature. The latter
is essentially controlled by the dimensionless parameter Su: Increasing [ or increasing p will
have the same effect in the sense that both lead to an increased density and therefore larger
lattice-spacing effects.” These translate into finite-range effects which can be best understood by
again looking at the finite range expansion of the scattering phase-shift in Eq. (6.1.2): While
in the continuum r = 0 by definition, the corresponding effective range on the lattice will
generally be finite [91]. This implies that particles in momentum states other than p? = 0 feel a
finite-ranged two-body potential and thus a deviation from the unitary limit. As stated above,
the effect worsens with increased density in the system as the particle spacing approaches the
induced finite range of the potential.

A somewhat different way of looking at this is to realize that the lattice spacing determines the
UV cutoff in the calculation. From this standpoint, an increase of the density then corresponds
to filling momentum states. If the spacing is too large (or the UV cutoff is too small), then
already a substantial amount of momentum states will be occupied in the noninteracting limit
and therefore excitations to higher states are no longer possible when the interaction is turned on.
To investigate the effects of the finite box size, we consider spatial volumes V = (N_)3 with
N, = 17,9, 11 and periodic boundary conditions. In Fig. 6.4, we display the behavior of the
density in units of A3, for a selected set of parameter values (Bpu, 8h) as a function of inverse
spatial volume. Our CL results for the interacting density exhibit a behavior which follows closely
the trend of the density of the noninteracting system on an appropriately sized lattice (shown
as gray lines). Moreover, where applicable, our results also show very good agreement with the
results from the virial expansion. The scaling of the noninteracting system suggests that our
largest lattice sizes are already close to the infinite limit for a wide range of Su values.

It should be mentioned that our choice for the lattice parameters is appropriate for a computa-
tion of “integrated quantities”, such as the density EOS. For an accurate calculation of other
observables, such as correlation functions, this may not be the case. In fact, a computation of
the contact in [151] relied on equivalent lattice parameters as the present work and showed that
the one-particle momentum distributions were not obtained sufficiently accurate at very large
momenta. At least for the calculation of the density EOS and related quantities, however, this
effect seems to be subleading.

As we shall discuss further below, our values in the normal phase at lattice sizes of N, = 11
are in excellent agreement with a variety of benchmark values in the spin-balanced case, both
from experiment and theory. There is no reason to believe that this should change in the
spin-imbalanced case. However, in order to extract precise continuum properties, a finite-size
scaling is a necessary next step. Typically, this is done via a filling-factor extrapolation to zero
density or, equivalently, infinite volume. The strategy is to fix the particle number, i.e., to work
in the canonical ensemble, and then subsequently study the same particle content at increasingly
larger lattices. At finite temperatures, such a treatment requires a projection to a fixed number
of particles as proposed in several MC studies [280-282] as well as a recent CL application for

"In the condensed matter literature, the density on the lattice is also referred to as filling factor.
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Figure 6.4: Dimensionless density nA3 as a function of inverse volume for selected values of
(Bu, Bh) together with the noninteracting values on the lattice (solid lines) and the values in the
infinite-volume limit (symbols at V=1 = 0) as well as, where applicable, the results from the
virial expansion (dashed lines).

low dimensional Fermi systems [283]. In this thesis, however, such an approach was not explored
and left for future investigations.

Finally, the influence of an effective finite range of the interaction potential may be mitigated by
better matching the scattering properties of the lattice theory to the continuum. The obvious
benefit of such an approach, as compared to simply increasing the lattice size, is the drastically
lower numerical cost since better continuum results are achieved at a constant lattice size. Several
strategies have been devised in this regard, especially in the high-energy lattice community
where samples at large lattices are exceedingly expensive to compute. For the UFG, early
approaches involved matching the second-order virial coefficients [279]. Recently, improved
transfer-matrices have been used to accurately compute ground-state properties [93] and so-called
improved operators have been proposed for unitary fermions in the ground state [91]. The latter
approach holds particular promise for the present system. However, it has never been applied to
the UFG at finite temperature, to the best of our knowledge.

6.2.4 Step size dependence & extrapolation

Apart from finite-volume effects, Langevin-type approaches suffer from the use of a finite step
size At which is required to solve the CL equations.® With the integration method applied in

8This dependence may be considered a general drawback compared to Metropolis-based approaches, where the
accept-reject step eliminates this systematic bias.
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Figure 6.5: (Left) Density EOS of the balanced gas for CL integration step sizes of At =
0.16,0.12,0.08 and 0.04, together with values extrapolated to At — 0. (Right) Density EOS for
Bu = —1.0 as a function of At — 0.

this work, the computational effort scales linearly with the inverse step size, however, so does the
systematic bias. As already remarked in Section 4.4.2; this requires to either settle for parameters
with sufficient accuracy at reasonable cost or to perform an extrapolation At — 0. The latter
strategy has the obvious advantage of completely eliminating the systematic bias but also comes
at the price of running multiple simulations at various values of the At parameter.

The dependence of our results on At is shown in Fig. 6.5, along with the extrapolation to
vanishing step size. The left panel of Fig. 6.5 shows the density EOS in the balanced case
for various values of the adaptive integration step At, together with the extrapolated values.
We observe that the results for the EOS somewhat strongly depend on the step size, and the
dependence is stronger the larger Su is.

As an example, this linear behavior is illustrated in detail for S = —1.0 in the right panel
of Fig. 6.5. Indeed, we in general observe an almost perfect linear behavior which allows for a
precise extrapolation to the limit At — 0 and thus for an elimination of the systematic error
associated with a finite integration step.

The right panel of Fig. 6.5 also highlights the necessity of an extrapolation. As apparent from
the figure, the results at the lowest considered step size At = 0.04 deviate from the extrapolated
value by ~ 5% which is well above the statistical accuracy (indicated by the errorbars) and even
larger when we move towards denser systems. Although the computational cost is still modest
at At = 0.04, smaller values of At become increasingly expensive and, while still feasible at
the lattice sizes considered for this work, smaller values might be prohibitive at larger lattices.
Therefore, we found it most convenient to extrapolate the step size with the help of larger
integration steps of At = 0.08,0.12 and 0.16 which we perform for all our results to follow.
Note that it is certainly possible to shift the extrapolation to larger values of At, however, at
some point accuracy will suffer due to the “long distance” that the extrapolation has to bridge.
Generally, the choice of At is specific to the problem at hand and should be addressed to obtain
reliable results.

The specific choice of parameters for the discussion of this systematic error serves to exemplify
the analysis. Other values for Su and Sh yield results with equivalent accuracy.
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6.3 Thermodynamics of the spin-polarized unitary Fermi gas

Having addressed the numerical artifacts introduced by the lattice treatment, we are now in
a position to explore the thermodynamics of the UFG. We start by considering the balanced
case, which has been under intensive experimental as well as theoretical investigation over the
past two decades. Therefore, the system provides an excellent benchmark for our CL results and
serves to validate our approach for the spin-imbalanced scenario.

Our strategy is to consider the UFG at fixed values of the imbalance parameter Sh (which
vanishes in the balanced limit) and varying the dimensionless average chemical potential Su. For
large negative values of Su, the system will be dilute as it is energetically costly for particles to
enter the system. In this regime no real Fermi surface exists and the gas is dominated by the
thermal energy k5T, i.e., approaching the classical regime. Here, only few-body correlations are of
importance due to a small scattering cross section which is proportional to the square of the small
thermal wavelength Ap. This leads to the applicability of the so-called virial expansion (VE),
which is a power-series representation of the partition function in terms of the fugacities z, = e”#-
and may be written as

2 =Q, > 22"b,,. (6.3.1)

The parameters b,,,, are called virial coeflicients and may be obtained by solving the n +m
body problem.’ The maximal radius of convergence of the above series in the balanced case
is z = 1, corresponding to Su = 0. Beyond that point the fugacity ceases to be small and the
expansion breaks down. For the polarized case the majority species features a larger fugacity
than SBu such that the convergence radius in terms of Bu is reduced and the VE breaks down
already at Su < 0.

Increasing the chemical potential, and particularly proceeding to positive values of Su, results
in larger densities of the gas and therefore larger values of the Fermi energy ep which will
eventually be dominant. The increased value of the Fermi energy leads to lower values of
T /Ty and ultimately to a sufficient build-up of the Fermi surface such that pairing between the
particles occurs. In the balanced gas, pairing becomes dominant and causes a phase transition
from the strongly interacting normal phase to a superfluid phase at 7' ~ 0.171}, which is an
unusually high transition temperature compared to conventional BCS-type superfluids. The
transition is smooth, i.e., of second order, and has been precisely characterized in experimental
measurements [32, 271]. The phase transition leaves a distinct imprint on the thermodynamic
properties and, most notably, causes the specific heat to diverge at the critical temperature.'®
As remarked in the introduction, numerous quantitative studies have been conducted for the
balanced case which allows us to extensively compare our results in this limit.

In the presence of a nonvanishing chemical potential mismatch, i.e., Sh > 0, the system is
effectively subjected to a magnetic field which causes a spin-selective energy shift of the single-
particle levels. As remarked already in the introduction, this leads to a competition between spin
alignment and pair formation, causing the superfluid to vanish above the critical field h,. At

9 A practical overview of the VE along with values for the coefficients and expressions for the specific observables
discussed below may be found in Apppendix D.

10The shape of the curve for the specific heat resembles the Greek letter A and hence is sometimes referred to as
A-transition.



122 CHAPTER 6 — THE SPIN-POLARIZED UNITARY FERMI GAS

zero temperature, the transition was found to be of first order, although with varying predictions
of the exact value of the critical imbalance (see discussion below). Consequently, a tri-critical
point needs to exist where the nature of the phase transition changes from second to first order.
While mean-field considerations provide some knowledge on the phase diagram in the BCS
and BEC limits, the unitary regime so far lacks a full characterization of its phase structure.
Experimentally, superfluid behavior of the UFG has been observed in the presence of spin
polarization [31-36] but the exact nature of the observed phases remains a puzzle.

6.3.1 Density equations of state

The central thermodynamic properties of interest in this thesis are the densities of the spin
components. The total particle density is obtained via differentiation of the partition function
with respect to Su:

1 - 10InZ
‘7<N> = Vo) (6.3.2)

n

Unless otherwise noted, we normalize our results with the noninteracting density n, of the
balanced gas at the corresponding average chemical potential and temperature which is obtained
via numerically integrating the Fermi-Dirac distribution (see Apppendix C).

Benchmark for the spin-balanced UFG

As a first step, we consider the density EOS for the balanced UFG to benchmark our values
against existing values in the literature. The results are shown in the top panel of Fig. 6.6
as a function of Su. The CL values vary smoothly across a wide range of chemical potentials
which may be translated into a range of T'/T values. The statistical errorbars, which do not
contain any estimates of systematic errors, are small and on the order of the symbol sizes. Our
results are in excellent agreement with an experimental determination of the EOS by the MIT
group [271, 272] across almost all shown values of Su. In the fully quantum degenerate regime
at large values of i, some deviation is observed near the transition to the superfluid phase
(gray shaded area) which is located at (fu). ~ 2.5. This discrepancy, as remarked above, is
most likely the consequence of a combination of numerical instabilities and the intermediate
system size considered here. Our values beyond (5u), show a qualitatively similar behavior to
the experiment, however, they are in quantitative disagreement and thus not shown here.

On the theoretical side, we may compare our values with various other methods, most notably, MC
results from the determinantal Hybrid Monte Carlo (DHMC) approach [152] as well as the bold-
diagrammatic Monte Carlo (BDMC) method [272]. The former is a lattice technique relying on
an equivalent representation of the partition function as the CL approach. Agreement is excellent
across the entire parameter range, however, the approach suffers from similar shortcomings
regarding the lattice cutoff. The BDMC method relies on a diagrammatic summation of relevant
skeleton diagrams which is done directly in the thermodynamic limit (TL). Naturally, the
calculation of observables in the TL provides a tremendous advantage as it circumvents the need
for finite-size error correction. However, the BDMC method suffers from convergence issues which
seem to be particularly severe towards the phase transition. Moreover, the symmetry broken
phase seems to be presently inaccessible via this otherwise powerful method [272, 274, 284].
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Figure 6.6: (Top) Density of the balanced UFG obtained by CL (blue squares), in units of
the noninteracting unpolarized density n, as a function of the dimensionless average chemical
potential Su. Also shown, third-order VE (dashed line), experimental results [271] (red circles),
and theoretical results obtained by bold diagrammatic Monte Carlo calculations [272] (dark
diamonds) and determinantal hybrid Monte Carlo calculations [152] (light diamonds). (Middle)
Detailed comparison of CL data (symbols) with 1st, 2nd and 3rd orders of VE (lines). (Bottom)
Detailed comparison of CL results for nA3. (squares) to DHMC values [274] (diamonds) as well
as experiment (circles) at Su = 0.0 and Su = 2.0 (left and right, respectively).
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Coincidentally, the BDMC method deviates from the experimental measurement in the same
way as the DHMC and CL results, albeit, due to different reasons. In the lower panels of Fig. 6.6
we perform a more detailed comparison of our EOS to experiment and more recent BDMC
determinations [274] and find agreement at the 1% level at Su = 0.0 and ~ 4% at Su = 2.0. We
emphasize that the CL errorbars only contain systematic uncertainties whereas the uncertainty
of the benchmark data also includes an estimate of systematic bias.

Additionally, results obtained via the Luttinger-Ward (LW) approach [38] are shown in Fig. 6.6
which we find to be in good agreement in the low density regime. However, with increasing
chemical potential, the LW approach seems to systematically overestimate the density. The
resolution of the density dependence on the chemical potential seems to be a general shortcoming
of the LW theory in ladder approximation [285] which otherwise gives consistent results for
various thermodynamic quantities, most notably thermodynamic response functions (see below).
Similar behavior of an equivalent LW implementation [286] has been already remarked in [271].
Finally, we compare our results in the low density limit to the VE as depicted in the central
panel of Fig. 6.6. At third order, the expression for the density reads

nves (Bi, Bh) = no(Bp, Bh) + %1 [222 Ab, + 323 Abg cosh(5h))] (6.3.3)

which is also valid for polarized systems (see Apppendix D for a derivation). We find excellent
agreement in this limit and observe that the VE approaches our results order-by-order. Beyond
B ~ —1.0 the third-order VE curve dips to lower densities which marks the limited applicability
of the expansion whereas the CL values continue smoothly towards larger densities, as expected.
This extensive benchmark of the density EOS of the balanced UFG shows remarkable agreement
among a variety of methods and renders the CL approach valid for a study of the resonant Fermi
gas, at least in the balanced limit. The observed discrepancies at low temperature, which are
shared amongst all state-of-the-art theoretical methods, are expected to be cured by a more
numerically stable implementation of the CL method and larger lattice sizes.

Density EOS of the polarized UFG

Having ensured that the CL method gives reliable values in the known limits, we now move
towards unexplored territory, i.e., the polarized case which is accessible via the CL method with
essentially the same numerical effort. We show our determination of the density EOS in Fig. 6.7
again as a function of Su for values of Sh = 0.0 to 2.0.

The sole benchmark for the density EOS at finite temperature in terms of the grand-canonical
variables Su and Sh was found to be the VE which shows excellent agreement for all values of
Bh studied here, in the regime where the VE is applicable. As already pointed out earlier, the
radius of convergence for the VE is expected to shrink with increasing Sh as a consequence of
the additional scale in the system. Indeed, we find this behavior and the third-order VE already
starts to deviate from our results at Su ~ 1.5.

Beyond the virial regime, our values continue to evolve smoothly and we observe the polarized
system to approach the EOS balanced system from above. This is not unexpected, as the relative
asymmetry h/p decreases when [u is increased at fixed fh. Of course, the approach to the
balanced EOS should happen at progressively larger values of Su when Sh is increased, which is
indeed the case and can be seen in Fig. 6.7. As the balanced system is known to be governed by a
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Figure 6.7: Density of the polarized UFG obtained by CL, in units of the noninteracting
unpolarized density n, as a function of the dimensionless average chemical potential S for
various fixed values of the dimensionless Zeemann field Sh (symbols). Dashed lines correspond
to the third-order VE at the according field strengths.

superfluid ground state above (Su),., this observation also suggests that the critical temperature
decreases with increasing spin asymmetry, in line with (semi-)analytic studies [37, 38, 63, 287]
and lattice MC studies of a slightly spin-imbalanced UFG using reweighting techniques [276, 277].
To the best of our knowledge, the here presented EOS for the polarized UFG represents the first
systematic study of this quantity based on ab initio methods. Our results should be experimentally
testable via essentially the same procedure as in [271], where the chemical potential was obtained
via the local change of the density with respect to the position in the trap. However, it is
unclear at this point if the spin-selective measurement of the chemical potential holds unforeseen
experimental roadblocks.

Note that the value of Sh = 2.0 by no means reflects the boundaries of our approach. To reliably
study systems at larger values of Sh = 2.0, however, box effects certainly need to be addressed
due to a strongly increased density of the majority species.

Magnetization & Polarization

The unequal densities of spin-up and -down particles allow for an investigation of magnetic
properties of the UFG. The difference of spin-up and -down densities is just the magnetization
which can be written as the derivative of the partition function with respect to the effective
Zeemann field:

1, ~ 10lnZ

m= —

M) = Vo(ph)

(6.3.4)

Alternatively, we may normalize the magnetization with the total density to obtain the relative
polarization

m_MmTnN (6.3.5)
- 3.

b )
nT—I—ni
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Figure 6.8: (Left) Magnetization normalized by the corresponding noninteracting density as a
function of Su (Right) Relative polarization as a function of SBu. At Sh = 2.0 results from the
LW approach [38] are available and compared to CL. Dashed lines correspond to the third-order
VE.

which is more commonly used in the literature. Our results for the magnetization are shown in
the left panel of Fig. 6.8 as a function of Su. At high temperature we can again compare to the
third-order VE, which reads

mygs(Bu, Bh) = my(Bu, Bh) + Q—VlAb323 sinh(Sh). (6.3.6)

Similar to the density, the results for the magnetization match the VE for large negative values
of Su and start to deviate at Su ~ —1.0. For Su = 2.0, which is close to the critical value of the
balanced system, we observe that the magnetization only shows a very mild dependence on Sh.

As discussed above, the magnetization is supposed to be small in the superfluid phase since
pairing is energetically more favorable, or equivalently, the response to an external magnetic
field is suppressed by the pairing gap (see, e.g., [56, 288]). Therefore, our results suggest that
the system remains close to the superfluid phase for fh < 2.0, provided that Su is fixed close
to its critical value (Bu), for the balanced case. Sufficiently below the critical regime, i.e., at
sufficiently high temperature, the system can “easily” respond to the magnetic field by flipping
spins to lower its total energy (see discussion above).

In the right panel of Fig. 6.8, we present results for the relative polarization p. At large
temperature and chemical potential asymmetry, the system is highly polarized and essentially
dominated by a single spin species. With increasing (u, the polarization quickly is suppressed
until it drops to p < 0.25 at (Bu),. = 2.5. Additionally, we compare our results for p at Sh = 2.0
to the LW approach [38] which, to date, seems to be the only quantitative benchmark in the
literature.!! We find excellent agreement across all values of By, in contrast to the density EOS
before, where the LW values showed some deviation at low T'/T. This observation suggests that
the systematic error of the LW approach tends to cancel out for the polarization [285].

HMany more values of Bh have been studied in [38]. Due to an unlucky choice of parameter values, however,
the Sh = 2.0 line is the only parameter set that allows for a comparison without interpolation.
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Figure 6.9: Second derivatives of In Z with respect to Su and Sh (blue squares) and with respect
to Sh and Bu (red circles) as a function of Sh for values of Su = —3.0,—2.5,—2.0, ..., 2.5. Solid
and dashed lines are introduced to guide the eye.

6.3.2 Maxwellrelations: a valuable cross-check

The above analysis shows that benchmark data is abundant for the balanced UFG. For the
polarized case, however, quantitative studies are scarce. To further verify the internal consistency
of our results even beyond the virial regime we may exploit some Maxwell relations. Specifically,

() = (). o

must hold because the order of the derivatives should not matter mathematically. Since the

the relation

data points at different (Su, Sh) values are statistically independent as they stem from different
simulations, this check further backs the physical soundness of the CL results.

The outcome of this analysis is depicted in Fig. 6.9, where we show the above second derivatives
of In Z as a function of Sh for multiple values of fixed Su. We find good agreement for almost all
values of Bu considered except for the largest value at Su = 2.5, which is also where our results
for the density EOS start to deviate from the experimental values.
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Figure 6.10: Pressure in units of the noninteracting pressure Ppg = Ppg(B4) + Prg(Bp) as
a function of fu. CL values (lines) are shown at fixed values of Sh = 0.0 (blue) and Sh = 2.0
(orange). Also shown are the experimental values from [271] (red circles) and LW results from [38].
The gray shaded area reflects the superfluid phase.

The derivatives have been obtained numerically from the above presented equations of state.
The procedure first involves a cubic spline interpolation with natural boundary conditions which
then allows for a simple derivative of the spline polynomials. Note that such an approach might
be problematic for overly noisy data [289]. Here, however, the strategy yields very stable and
trustworthy results for the first derivatives of the density and magnetization EOS. Naturally, the
method fails for higher order derivatives as a consequence of the order of the spline.

Of course, this internal check should not be understood as a sufficient condition to ensure
the validity of our results. Rather, we may view it as a necessary condition that needs to be
satisfied in order to assume that the results are physically meaningful at all. A failure to meet
the condition, on the other hand, indicates faulty behavior of the simulation and needs to be
investigated.

6.3.3 Pressure scaling function

Knowledge of the density EOS allows us to obtain a variety of other quantities via suitable
thermodynamic relations. As a first step, we deduce the pressure, which is often measured
in experiment via the local change of the density profiles in the trap and related to the total
energy of the gas [271, 272, 290]. We can obtain the pressure via numerically integrating the
Gibbs-Duhem relation,

Bu
P(pu) = ;/ n(x) dz, (6.3.8)

at fixed value of Sh. The integration domain starts at —oo which implies that we have to use
the VE up to a cutoff value. Above the cutoff, we integrate the numerical CL results. In our
case, the cutoff is located at Su = —3.0 which does not introduce any bias due to the excellent
agreement in this regime.
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This procedure allows us to compute the dimensionless scaling function for the pressure

P(Bu, Bh) = Peg (B, Bh) fp(Bu, Bh) (6.3.9)

which only depends on the two parameters Su and Sh as proposed in [270], being a consequence
of the universality in the unitary regime. Our results are shown in Fig. 6.10 for values of Sh = 0.0
and Bh = 2.0 as a function of the dimensionless chemical potential.'?

As before, we compare to the experimental values in the balanced case [271] and observe reasonable
agreement up to the superfluid transition point. This analysis shows that our density EOS is
smooth enough to infer related thermodynamic properties within reasonable accuracy.

Moreover, we compare our values to a recent calculation based on LW theory [38]. To the best of
our knowledge, this LW study constitutes the only quantitative determination of the pressure
scaling function for general temperatures and imbalances beyond the mean-field level, besides
the present work. In both, the balanced and polarized case, we find good agreement up to values
of B < 0.5. Similar as for the density, the LW approximation seems to slightly overestimate the
pressure in the high density, i.e., low temperature limit.

6.3.4 Energy equation of state

From the pressure EOS we immediately are able to extract the energy of the system via the
relation

OF 2F 1 C
b= (W) NT T3V * 127a V' (6.3.10)
which holds for the entire BCS-BEC crossover region. Here, C' is the so-called contact parameter
which is an essential thermodynamic property quantifying the strength of short-range correlations
in the system [228-230]. Its value for the UFG has been extensively studied in the literature (see,
e.g., [151, 273, 284, 291-293]) and has been recently determined experimentally as a function of
temperature [55, 294]. The quantity is notoriously difficult to estimate at finite lattices, as it is
extremely sensitive to the UV behavior, and thus to the cutoff induced by the lattice spacing.
Therefore, the investigation of the contact is beyond the scope of the present thesis.
Luckily, the contact term in the above expression enters with the s-wave scattering length a in
the denominator such that the relation for the UFG takes on the simple form

PV =ZE, (6.3.11)

which coincides with the expression for a classical Boltzmann gas as a consequence of the scale
invariance. In the literature, the energy is typically written via a dimensionless scaling function:

E(Bu) = Epg fe(Bu, Bh), (6.3.12)

where Fpq denotes the ground-state value of the Fermi energy at the corresponding density. At

20ur results for Sh = 0.4,0.8,1.2 and 1.6 are omitted to avoid clutter but lie between the two shown curves
in Fig. 6.10.
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Figure 6.11: Energy in units of the free gas energy Epq as a function of T'/T%. CL values (lines)
are shown at several values of Sh and are compared to various other results for the balanced
case: experimental values from [271] (red circles) and [43] (green circles), DHMC [152] (yellow
diamonds) and AFQMC [293] (dark diamonds). (Left) Full range including temperatures up
to T' /Ty = 1.0. (Right) Zoom to the phase transition including several determinations of the
Bertsch parameter (see text).

zero temperature, the ratio defines the so-called Bertsch parameter £ via
E =¢Fpg, (6.3.13)

which is a central universal number of the UFG as it also determines multiple other properties.
Over the years, it has become by far the most intensely studied property of the UFG and, since £
has been studied extensively via a variety of many-body approaches, it has somewhat evolved
into a benchmark number to compare the accuracy of various methods and optimization schemes.
We show our dimensionless energy scaling function, as obtained via Eq. (6.3.12), in Fig. 6.11 as
a function of T'/Ty. The comparison to the experiment [271] reveals excellent agreement in the
balanced case for T'/Ty = 0.25, below which we observe a slight overestimation of the energy. We
also show other theoretical values obtained in the grand-canonical ensemble via DHMC [152] as
well as recent AFQMC results for fixed particle numbers of N, = N| = 33 obtained via particle
projection [293]. While the former results have been obtained at finite (yet large) lattices, the
latter study used volumes up to V = 133 in combination with a detailed finite size extrapolation
to obtain remarkable accuracy. In addition to the balanced case, we show the first determination
of the spin-imbalanced energies which, as expected from the discussion of the pressure EOS,
approach the balanced result at low temperature.

To set our values in perspective to the zero-temperature extrapolation, a small selection'® of
determinations of the Bertsch parameter is shown in the right panel of Fig. 6.11. Early studies,
relying on Fixed-Node Diffusion Monte Carlo (FN-DMC) [295], estimated & = 0.42(1). Over
the years, the value settled to £ ~ 0.37 as confirmed in multiple experimental measurements by
various groups [43, 44, 271, 296] and a variety of unbiased Monte Carlo determinations: AFDMC
with giant lattice sizes up to V' = 273 [107] obtained & = 0.372(5), highly optimized ground-state
lattice MC studies [93] up to particle numbers of N = 66 computed £ = 0.366(11) and a recent
AFQMC study [293] with finite size scaling up to V = 153 finds £ = 0.367(7). Finally, a very
recent determination employed the HMC method up to volumes of only V = 113 in combination

13For a more comprehensive overview on the determinations of the Bertsch parameter see, e.g., [93, 293].
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with a precise matching of the scattering properties to the continuum [297]. The procedure yields
a remarkably good estimate of £ = 0.369(2) and £ = 0.372(2) (depending on the details of the
extrapolation) and highlights the relevance of improved lattice operators.

Clearly, our estimated value for the energy is neither close to zero temperature nor in exact
agreement with the values at T' > 0 due to the reasons already discussed above. However, the
CL results do align with comparable early lattice studies without severe optimizations [101, 102]
which encourages the use of future optimizations and yields an optimistic outlook. Finally, it
is noted that the determination of the Bertsch parameter is best done directly in the ground
state, which allows for a much more efficient implementation based on the projective formulation
(see Section 2.5). We will briefly return to this topic below.

6.3.5 Thermodynamic response functions

Up to this point, the discussion revolves around the equations of state for pressure, energy and
densities. However, these functions, although precise, only show subtle traces of the superfluid
phase transition. A precise determination of critical properties, such as the superfluid transition
temperature 7T, from these equations of state is therefore extremely challenging to measure
experimentally. In the latter, it is more common to rely on thermodynamic response functions
such as the compressibility or the specific heat to identify the phase transition point.

This can be reasoned by considering the role of fluctuations near a second-order phase transition.
Far away from the critical regime, a local perturbation will only affect a local region of the system,
or equivalently, the correlation length is small. Towards the phase transition, the correlation
length grows until it eventually diverges at the critical point and therefore the system becomes
very susceptible to microscopic fluctuations. In other words, small local changes will have a
macroscopic impact on the state of the system.

We further elucidate this instance by considering the isothermal compressibility, defined via

1 /0n 1 on
o= (58),, "= (awm)”' (0344

We may rewrite this as a second derivative of the partition sum which in turn may be expressed

as the variance of the density!4

(%)T,f 1V@<gu> (éa?ﬁzpo) (6.3.152)

1 1 02 02 1 92
v (‘22 551) 03m) zawu)?) (6:3.155)
. %/(<N2> —(NY2). (6.3.15¢)

Due to the large impact of fluctuations at the critical point, quantities of this type will generally
feature a clear signal of the phase transition and are therefore routinely used as a probe in
experiment as well as theoretically. In fact, the divergence near a second-order phase transition
follows universal scaling laws which may be characterized with critical exponents (see, e.g., [298]).

A similar derivation holds for all other susceptibilities we consider in this work and is shown in Apppendix E.
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Figure 6.12: Compressibility s in units of the noninteracting compressibility at zero temperature
Kpe in dependence of T'/T as obtained by CL (blue squares). Also shown are experimental
values (red circles) [271] as well as theoretical results from T-matrix [299] (yellow line) and
LW [300] (green diamonds) approaches. At high temperature, the VE of third order (dashed
line) is shown. The dotted line shows the noninteracting compressibility.

For finite systems, such as the ones we consider in this work, the divergence is naturally washed
out since Eq. (6.3.15) represents a finite sum. Nevertheless, the critical exponents may be
obtained by finite size scaling over a variety of system sizes. In the present work, however, we do
not perform such an analysis but rather present our results at finite lattices as a first step towards
the characterization of thermal susceptibilities of the spin polarized UFG. Moreover, we do not
rely on a determination of the response via a fluctuation relation of the above type, but rather
obtain the thermodynamic response via numeric differentiation of the density or magnetic EOS,
as discussed in Section 6.3.2. We found this procedure to yield more stable results. The obvious
drawback is a difficult error estimation which in such a case has to be carried out through linear
error propagation.

As shown below, our thermodynamic response functions match state-of-the-art results from other
methods as well as experiment away from the critical regime. Naturally, we observe deviations
from experiment at the critical point, however, we successfully recover the qualitative features
which allow us to draw conclusions on the underlying physics.

Compressibility

As remarked above, we obtain the isothermal compressibility x, defined in Eq. (6.3.14), via a
numeric differentiation of the density EOS. Our results for x as a function of 7'/T} are shown
in Fig. 6.12. Across all temperatures, the strongly correlated gas is more compressible as the ideal
Fermi gas, which is a consequence of the attractive interaction. Slightly below the superfluid
phase transition, which is indicated by a rapid increase of the compressibility, we find a maximum
and a subsequent suppression of k in line with expectations. A precise determination of the
critical temperature, however, is challenging due to the roundoff stemming from the finite system
size (see discussion above).

Throughout the entire range above the critical temperature 7., we observe remarkable agreement
with experimental values [271]. Additionally, we compare our results to a recent T-matrix
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Figure 6.13: Compressibility for the spin-polarized UFG in units of the noninteracting com-
pressibility kpg as a function of P/Ppq as obtained by CL (lines). The lines correspond to
fh =0.0,0.4,0.8,1.2,1.6 and 2.0 (front to back, respectively). Also shown is the experimental
determination in the balanced case [271] (red symbols) and the third-order VE (dashed lines).

calculation [299] which does show a rapid increase at low temperature but starts to deviate
from the CL values and experiment at T /Ty ~ 0.75. Finally, we also show the compressibility
obtained via LW theory [24], which is in excellent agreement with our CL results.

In Fig. 6.13, the same quantity is shown in dependence of the pressure scaling function P/Ppq.'°
The figure also contains our results for the imbalanced UFG at various values of Sh. For all
studied chemical potential asymmetries we find perfect agreement with the third-order VE at
large P/Pypq

Q

1 9
Kyves = firc (B, Bh) + (7*1 42° Aby + 523Ab3 cosh(Bh)| . (6.3.16)

nygs)?
At low temperatures near the critical region, the above mentioned issues carry over to the
imbalanced case. Therefore, the presentation on a three-dimensional grid is deliberately chosen
to highlight the qualitative nature of our results in this regime.
We observe that the position of the maximum depends only weakly on Sh, suggesting an almost
constant critical temperature (within our accuracy) as a function of Sh, at least within the
considered parameter range Sh < 2.0. This conclusion is in line with our previous interpretation
based on the magnetic EOS. Lattice MC studies for slight imbalances [276, 277] as well as an

15Using the pressure as x-scale circumvents the issue of thermometry in the experimental setup which is a
challenging task particularly in the strongly interacting regime.
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Figure 6.14: Specific heat per particle of the balanced UFG as a function of T'/T. The dotted
line shows the noninteracting Fermi gas at the corresponding temperature and the dashed line
represents the classical limit ¢,/N = 2 (Dulong-Petit law). (Left) Full range including the
high-temperature regime. (Right) Zoom to the critical region (superfluid phase marked as
gray shaded area). Also shown: MIT experiment [271], LW theory [24] and recent AFQMC
values [275].

investigation based on the functional renormalization group [37] reached similar conclusions for
this part of the phase diagram.

Specific heat

To complement our discussion of the thermodynamic response, we investigate the specific heat
(at constant volume) for the spin-balanced UFG. It is defined as the response of the energy to a
change of temperature and may be written as

Cy (OB  3(T\'[ P #pg
N—(aﬂN,v—z(TF) Pt (6:3.17)

In analogy to the compressibility discussed above, the specific heat relates to the energy fluctua-
tions via

c 2 2 2
== 3 () — (E)?) (6:3.18)

and is therefore expected to show a clear hallmark of the second order phase transition. It is
important to note that the derivative in Eq. (6.3.17) has to be carried out at constant particle
number N, which is a priori impossible to do in the grand-canonical ensemble (which is formally
coupled to a particle reservoir). Through several thermodynamic relations as well as the universal
scaling of the UFG, however, a suitable expression may be obtained which was also used in an
experimental investigation to compute the specific heat from density measurements [271]. A
detailed derivation may be found in Apppendix E.

Our results for Cy,/N in dependence of T/Ty are shown in Fig. 6.14. At large temperature,
the specific heat reaches its classical value of % as dictated by the Dulong-Petit law. At lower
temperature, but still above the superfluid phase, we observe that Cy,/N follows the value of
the ideal Fermi gas (shown as the dotted gray line) surprisingly close almost until the critical
temperature. At the transition we observe a washed out peak which nevertheless shows a hallmark
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of the experimentally observed lambda transition [271]. Below 7., the specific heat quickly drops,
as it is expected in the symmetry broken phase where the pairing gap exponentially suppresses
the ability of the system to accommodate thermal excitations.

Being a second derivative of the partition function, the specific heat is a notoriously challenging
quantity to measure in experiment but also to determine theoretically. This instance is reflected
by the somewhat increased errorbars of all benchmark values shown in Fig. 6.14, including an
experimental determination [271] and a recent AFQMC study at finite particle number of N = 80
at a lattice of V' = 113. Moreover, a comparison to results obtained from LW theory [24] is
shown.

The specific heat capacity may be used to probe pairing above the critical temperature, often
referred to as pseudogap regime. In the case of substantial pairing in the system, Cy,/N should
be suppressed already above the superfluid phase. We indeed observe a slight suppression at
around 7T'/Tp ~ 0.25, however, the effect is too delicate to account for substantial pairing in the
system. We rather attribute this behavior to systematic shortcomings of our treatment. This
conclusion is consistent with the other studies shown in Fig. 6.14.

Regarding the determination of the critical temperature, we unfortunately come to the same
conclusion as for the compressibility: The considered system sizes are too small to reliably
address this quantity which calls for further calculations including proper finite-size scaling.

6.3.6 The fate of Pauli magnetism at unitarity

The possibility to study spin-imbalanced Fermi gases with the CL method allows us to investigate
the linear response of thermodynamic quantities to an “external magnetic field”. The strength of
this field is given by the mismatch of the chemical potentials h, defined in the grand canonical
partition sum above. A central quantity of interest to consider is the magnetic or spin susceptibility,
defined as the derivative of the magnetization with respect to the external field:

oM
== . 3.1
w= (G, (6:3.19)

It quantifies how the system reacts to external magnetic fields in the same way as the compress-
ibility tells us about the change of volume with applied pressure. Equivalently, x,, is a second
derivative of the partition sum with respect to the effective Zeemann field and therefore relates
to the fluctuations of the magnetization via

X = B((M?) = (M)?). (6.3.20)

Early studies of this quantity have been performed by Pauli in order to understand the magnetic
properties of certain alkali metals. Due to the large Fermi temperature in these systems, the
electrons in the metals may be considered as a highly degenerate Fermi gas and therefore are well
described by the noninteracting theory, at least in a first approximation. By doing so, it became
possible to explain the weak temperature dependence of x,; in these paramagnetic materials.
Near the ground state, the dependence of x,; on T /Ty may be obtained via a Sommerfeld
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Figure 6.15: (Left) Magnetization in units of the interacting density for the balanced system
as a function of Sh for several values of Su. For Su < —1.0, third-order VE is shown with
dashed lines. (Right) Dimensionless magnetic susceptibility xy;/n(Sh = 0) as a function of Sh
(symbols) compared to the corresponding susceptibility of the free Fermi gas (dotted lines) at
equal chemical potential and asymmetry (color and shape coding as in other panel).

expansion which, at leading order, reads

2 [ T\?
= 1— — | — .3.21
XM = Xp [ 12 (TF) (63 )
with the Pauli susceptibility
3n
-2 6.3.22
XP 2ep ( )

To leading order, the Pauli susceptibility does not depend on h, which implies a linear growth of
the magnetization with the applied field. As a consequence of the Pauli principle, the susceptibility
is nonzero even in the ground state, in contrast to a classical gas, which would saturate towards
low temperatures (or large fields) and therefore show a vanishing response to a magnetic field. A
comprehensive discussion of these considerations may be found in [298].

At large temperature, on the other hand, the system enters the Boltzmann regime and should
therefore follow Curie’s law which predicts a decay with xy; = CT~! where C is the material-
specific Curie constant.'®

Again, rather than relying on the expression given in Eq. (6.3.20), we compute this quantity for
the UFG by performing numerical derivatives of the magnetization EOS at fixed values of Spu.
The benefit of this approach is the ability to also extract the magnetic susceptibility at zero-field,
which would otherwise be impossible due to the vanishing value of (M) for Sh = 0. However,
since we only consider six different values of gh, the values at the largest asymmetries slightly
depend on the boundary conditions used for the spline interpolation, which we fix to be open.
The associated uncertainty is not considered in the statistical errorbars.

16For completeness it is noted here that the charge degree of freedom would introduce more subtle effects
due to the spin-orbit coupling. In particular, a diamagnetic contribution arises which is often called Landau
diamagnetism. Depending on the effective mass this effect may even be the dominant. Further, due to the
occurrence of so-called Landau levels, the magnetization and hence the susceptibility are periodic functions of the
applied field, a consequence called the de-Haas-van-Alphen effect. For details see, e.g., Ref. [298].
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We show the results from this analysis in Fig. 6.15 at fixed values of Su as a function of Sh. In
the left panel of Fig. 6.15, the magnetization, in units of the noninteracting density at Sh = 0, is
shown and found to be in excellent agreement with the third-order VE for gu < —1.0. With
growing chemical potential, we observe an increasingly linear behavior of the magnetization.
As remarked above, this is exactly the behavior that is expected for a free Fermi gas at low
temperature. It is surprising, however, that this feature survives in the strongly interacting
regime.

To further quantify this observation, the spin susceptibility is shown in the right panel of Fig. 6.15.
As anticipated from the above considerations, the susceptibility becomes field-independent at
low temperature, i.e., large Su. Additionally, the corresponding susceptibilities for the ideal
Fermi gas are shown in the plot and observed to scale remarkably similar. Surprisingly, it seems
that the susceptibility of the strongly interacting Fermi gas scales almost identically to the
noninteracting case, although rescaled by a temperature dependent factor. For the lowest values
of S the noninteracting system even shows quantitative agreement with the results for the UFG
at low fields (a similar observation holds for the specific heat discussed above). To the best
of our knowledge, this constitutes the first determination of the spin susceptibility for general
fields h > 0. It will be interesting to see how these values compare to experimental measurements.

6.3.7 The spin susceptibility as a probe for the pseudogap

A central question in the study of strongly interacting Fermi gases is the nature of pairing just
above the critical temperature. While particle paring occurs in the superfluid phase, which comes
along with the formation of a gap in the energy spectrum, it is unclear how this feature evolves
above the phase transition. The situation for the UFG has been investigated via an array of
theoretical methods and has even been addressed experimentally [301-303]. The conclusions,
however, remain controversial and clear signals are still absent from the literature.'” This is of
course a consequence of the strongly-correlated nature of the UFG which poses severe limitations
to theoretical investigations. For an extensive overview on advances on pseudogap physics in
cold Fermi gases we refer to the recent reviews on the topic [28, 304, 305].

One reason for the interest in this regime is the possible connection to cuprate superconductors,
which, amongst multiple other phases, feature a pseudogap. It must be noted, however, that
the scenario in these systems is much more complicated and involves the competition of several
instabilities. The pairing gap in the high-T, superconductors may therefore be the consequence of
this competition, whereas a possible pseudogap in the UFG must be a consequence of pre-formed
pairs present above the critical temperature. Nevertheless, investigation of both scenarios could
lead to a knowledge transfer between the fields.

It has been argued that the spin susceptibility may be used as a probe to study the pseudo-
gap [288, 309]. The argument follows the discussion on the CC limit in Section 1.3: in the
BCS phase the energy gap protects the pairs against spin flips caused by the magnetic field.
This hinders the system to react to an applied magnetic field and consequently the magnetic
susceptibility will be small in this regime. Equivalently, a pseudogap should cause a suppression
of xy; at low temperature as a consequence of pre-formed pairs in the system.

17Part of the confusion about the subject stems from the absence of a stringent definition of the term as well
as different nomenclature proposed by varying authors. An excellent introduction to this matter may be found
in [304].
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Figure 6.16: Spin susceptibility x in units of the Pauli susceptibility xp as a function of 7'/T}.
The gray shaded area shows the superfluid phase and the dotted line represents the noninteracting
normalized susceptibility. (Left) CL values (squares) are compared to experimental values [302]
(red circles) as well as theoretical results from LW [300] (green triangles), T-matrix [306] (dark
dashed line), extended T-matrix [307] (red line), NSR [299] (dark solid line), spherical cutoff
AFQMC [308] (yellow diamonds) and AFQMC [28] (dark diamonds). (Inset) Zoom to the critical
region. (Right) CL results for the susceptibility for finite polarization compared to the third-order
VE (dashed lines).

To facilitate a comparison to the literature, we show our results for the spin susceptibility as a
function of T'/Ty in Fig. 6.16. Across all temperatures we find a lower spin susceptibility as for
the ideal Fermi gas (dotted line). In line with our previous discussion of x,;, we observe only a
mild dependence on the temperature in the normal phase to an extent that is comparable to
the low temperature expansion given by Eq. (6.3.21). This again highlights the similarity of
Pauli magnetism an the magnetic behavior of the normal phase at unitarity. Similar to other
quantities, we observe a convergence to the classical prediction at large temperature where the
spin susceptibility decays like oc 7! according to Curies law.

Additionally to our CL results, a variety of other determinations of the spin susceptibility of
the balanced UFG are shown in Fig. 6.16. All theoretical values, including the third-order
VE, seem to agree in the regime above T'/Ty = 1.0. Below this point, curves obtained via the
Noziéres-Schmitt-Rink (NSR) formalism [299] as well as varying T-matrix approaches [306, 307]
predict a substantial suppression of x,; far above 7. Interestingly, also an AFQMC study in the
grand-canonical ensemble [308] predicts a suppression at T'/Ty ~ 0.25 which is in contradiction
to a recent AFQMC study at fixed particle number [293]. The resolution of this conundrum
is based on the lattice momentum cutoff which apparently shows a pronounced impact on this
quantity: while the earlier study relied on a spherical cutoff in momentum space, the latter
considered the full Brillouin-Zone [28]. Our CL results agree very well with the latter MC study
as well as with results obtained from LW theory [24] across the entire temperature range. Most
confusingly, perhaps, all theoretical values are far off the experimental determination [302] (red
circles). This is likely a consequence of the trap-averaging procedure that has been applied in
the latter.

In the right panel of Fig. 6.16, we show the same quantity including our results for all values
of fh < 1.6. At large temperature, the curves for the imbalanced systems converge to the VE
and eventually to the noninteracting line, as in the balanced case. Moreover, we observe a mild
shift to larger values with increasing Sh, which is not unexpected, as the system tends to evolve
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Figure 6.17: Particle numbers and polarizations corresponding to (N;, N|) configurations of
closed energy shells on a 3D lattice.

slowly towards the noninteracting gas with increasing polarization.

Most interestingly, the results at Sh > 0 follow a qualitatively similar trend as for the balanced
gas and show no sign (within our accuracy) of suppression as the temperature is lowered. From
this analysis, we conclude that the pairing temperature 7™ only differs slightly, if at all, from the
critical temperature T.

6.4 Excursion: the spin-polarized UFG at zero temperature

As remarked already above, exotic superfluid phases are expected to be stable, if at all, only
at low temperatures. This regime could be challenging to reach with the finite-temperature
methods applied so far, due to the increased numerical effort that follows from larger values of
the inverse temperature 5. This motivates to work directly in the ground state which may be
done by employing a projective version of the CL method in analogy to our discussion of 1D
fermions in Chapter 5. In this section, we present results for the ground-state energy EOS of the
spin-polarized UFG from a first exploratory study. This study serves as a first benchmark in
order to establish the CL method as a reliable tool for ground-state calculations in three spatial
dimensions.

As opposed to the finite-temperature approach, which is formulated in the grand-canonical
ensemble and therefore assumes fixed chemical potentials, the projective formulation requires
fixed particle numbers which corresponds to the canonical ensemble. In order to approach the
thermodynamic limit, it is technically necessary to increase successively the particle number and
volume at constant densities. However, to study ground-state energies it was found sufficient
to consider particle numbers N < 100 at fixed system sizes [310]. In order to minimize finite
size effects, particle configurations are chosen such that the total momentum is zero and the
noninteracting many-body state respects the cubic symmetry of the lattice. These configurations
correspond to the full occupation of all available degenerate energy levels, i.e., the full occupation
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Figure 6.18: (Left) E/Epq as a function of the integration step At for EM discretization (blue

squares) and improved integration (orange circles). Dashed lines represent a polynomial fit.
(Right) Regulator dependence of the ground-state energy for 5 =5 and 3 = 16. The dashed lines
represent fits according to Eq. (6.4.1). Shaded areas represent 95%-confidence bands in both
panels.

of energy shells comparable to a full shell of atomic orbitals in the ground-state. The first
few of these “magic numbers” on a 3D lattice are N, = 1,7,19,27,33,... and are summarized
in Fig. 6.17, where also possible values of the polarization, constructed out of combinations of
these values, are shown. Note that particle numbers other than these closed-shell configurations
are accessible with similar numerical effort, however, the results could potentially suffer from
subtle lattice artifacts.

6.4.1 Numerical parameters & extrapolations

In the following, all results reflect averages over 4 trajectories of 2 x 10? decorrelated samples
which results in a statistical uncertainty of 1 — 2%. Moreover, all energies are obtained at
lattices of N, =9, which introduces a systematic bias that is not considered in the presented
uncertainties, see also the discussion below. To reach the ground state, the extrapolation § — oo
needs to be performed for which we considered values of < 20 (in lattice units) and subsequently
performed an fit to an exponentially decaying function. This parameter range reflects the current
limitations of our CL implementation, as numerical instabilities inhibit simulations at larger
inverse temperatures [311].

To study the potential systematic bias of the CL method, we briefly address the influence of
the finite integration step At and the regulator strength £ on our results. In the left panel
of Fig. 6.18, the ground-state energy for a system of N = 19 1 +19 | fermions as a function
of At is shown. Both approaches, the Euler-Maruyama (EM) discretization and the improved
integration scheme defined in Section 4.4.2, yield consistent values in the limit At — 0, which is
reached via a polynomial fit to the numerical data. The results reveal a qualitatively similar
picture as discussed in Section 5.6: While the EM discretization yields a linear behavior that
displays a relatively steep slope, the higher-order integrator yields essentially constant results for
all values of At under study. It is interesting to see that this property seems to hold even for the
strongly interacting UFG. This allows us to simply use the improved scheme with a relatively
crude step of At = 0.2 in the following.
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Figure 6.19: Ground-state energy in units of the noninteracting energy EpL. as function of
the relative polarization p. CL values (blue squares) are compared to experiment [312] (red
circles) and various DMC determinations [39, 313]. The gray shaded area indicates the superfluid
phase [39].

In Fig. 6.18, the ground-state energy of the same system is depicted as a function of the regulator
strength £ for two values of 3. The symbols show the numerical CL data and the dashed lines
correspond to a fit of the form

E(&)/Epg = a+ &P ec/t, (6.4.1)

which is empirically motivated and appears to fit the data reasonably well [311]. Interestingly,
the ground-state energy seems to level off to a plateau at low regulator strength, similar to
the results shown in Section 5.6. This suggests that extrapolation & — 0 may be omitted by
working at a sufficiently small value of &, where the systematic bias introduced by the regulator
is negligible to a good approximation.

6.4.2 Energy equation of state

Having addressed the numerical artifacts of our ground-state lattice treatment, we now discuss
the ground-state EOS as a function of polarization, as shown in Fig. 6.19. A comparison to an
experimental determination of the EOS [312] as well as several FN-DMC calculations [39, 313]
reveals that our CL values yield qualitatively similar results, however, at some offset to the
expected values. The systematic underestimation of F'/Fy displayed by our CL results originates,
most likely, from the considered lattice size which was fixed to the relatively small value N, = 9.
First calculations at N, > 9, which are not included in the present analysis, indeed have shown
larger values for E/FEp such that a proper finite-size scaling is expected to yield more accurate
results for the EOS. At present, however, our implementation is not suited to study profoundly
larger lattices due to numerical instabilities, as briefly discussed in Section 6.2.1.

The ground-state energy corresponds to the zero-temperature limit of the results discussed in
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Section 6.3.4. At zero polarization, the energy should approach the Bertsch parameter £ ~ 0.37,
which is indicated by the gray dotted line in Fig. 6.19. Although it appears that our present
CL determination reproduces the Bertsch parameter quite well, it should be noted that this is
rather of coincidental nature: As discussed above, finite-size scaling will shift the energy to larger
values and thus away from the physically expected result. The overestimation of the Bertsch
parameter by “plain”, i.e., unoptimized lattice methods has been observed before [63, 101, 102,
152] and is a consequence of the induced finite effective interaction range (see the discussion
in Section 6.2.3). To remedy this issue, optimized lattice schemes have recently been employed
which resulted in a greatly improved accuracy of the estimates for the Bertsch parameter [293,
297] as compared to earlier lattice studies. Alternatively, simply scaling up the volume to
giant sizes at constant particle content effectively suppresses finite-range effects, although at
dramatically larger numerical cost [107].

Finally, let us comment on the possibilities to study the phase-structure in the zero-temperature
limit via MC approaches. As remarked above, several MC studies have been performed in
the unpolarized limit at p = 0, which is known to feature a BCS-superfluid [12]. At large
polarizations, where the nodal structure of the wavefunction appears to be quite similar to the
one of a noninteracting Fermi gas, FN-DMC studies showed that the UFG is described well
by a Fermi-polaron picture, i.e., a Fermi liquid of quasiparticles [39] which is also supported
by experimental measurements [36, 43]. At intermediate polarizations, however, the possible
existence of exotic superfluid phases renders the nodal structure of the wavefunction essentially
unknown. An assumed nodal structure, which is necessary to avoid the sign-problem in DMC
simulations, therefore introduces an uncontrolled approximation and prohibits a straightforward
FN-DMC investigation in this parameter range.

The CL approach, on the other hand, does not suffer from such a limitation and potentially is
suitable to study the properties of the ground state for intermediate polarizations in ab initio
manner. To reliably analyze the structure of the ground state, for instance through the evaluation
of suitable two-body correlation functions, however, it is first necessary to accurately reproduce
the known results for the energy EOS, in order to ensure the validity of the CL approach in this
regime.

6.5 Recap & future directions

The results discussed in this chapter represent the first systematic study of the thermodynamics
of the spin-imbalanced UFG based on ab initio methods. Our analysis rests on the precise
determination of the spin densities of both flavors in dependence of Su. After a thorough
investigation of systematic errors associated with the CL treatment, we have obtained an
extrapolated EOS free of discretization artifacts. The resulting density EOS shows excellent
agreement with state-of-the-art experimental and theoretical values for the normal phase of the
balanced UFG. At finite spin imbalance, which is accessible within the same numerical effort,
our values mark predictions whose experimental investigation is expected in the near future.

From the precise density EOS we obtained a variety of other quantities through suitable ther-
modynamic relations. Via integrating the Gibbs-Duhem relation, we were able to compute
pressure and energy equations of state, which were also observed to be in remarkable agreement
with experiment at temperatures 7'/Ty = 0.25. By differentiation, we extracted several ther-
modynamic response functions, namely the isothermal compressibility and the specific heat per
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particle. These quantities display quantitative agreement with experiment and other theoretical
determinations across essentially all of the normal phase. In the critical region, however, the
remnants of the expected divergence are only resolved in a qualitative manner as a consequence
of the finite system sizes under study. A proper finite-size scaling procedure, including larger
lattice sizes, will improve this instance in future investigations.

One of the main results of our investigation is the determination of the magnetic susceptibility,
not only in the balanced case, but also at finite values of the Zeeman field h. To the best
of our knowledge, the quantity has neither been measured nor treated theoretically in this
regime. Our analysis reveals that the functional form of the spin susceptibility resembles the
Pauli susceptibility of the free gas, however, rescaled by a temperature dependent factor. In the
balanced case, we compare this quantity to a variety of other determinations and find excellent
agreement with LW [24] and AFQMC [293] computations. This verifies the accuracy of our
approach for this quantity and suggests the validity of our prediction for the spin-imbalanced gas.

Quantitative benchmark data for the UFG is essentially only existent for the balanced gas. A
recent study based on LW theory [38] marks the notable exception. Up to intermediate values
of Su < 0.5, we observe excellent agreement for the pressure scaling function, however, above
this value the methods start to slightly disagree. Since our CL approach better reproduces the
balanced experimental values, it is likely that the LW method overestimates the density in this
system.

6.5.1 Implications for the phase diagram

The phase diagram of the spin-imbalanced UFG has been investigated via several methods before,
however, its precise structure is not yet fully understood beyond the mean-field level which, at
best, yields a qualitative picture at strong interactions [57-59]. To set our findings in relation to
what is already known, Fig. 6.20 summarizes the current knowledge on the subject beyond simple
mean-field predictions. For completeness, we summarize selected results for critical quantities
in Tab. 6.1.

In the left panel of Fig. 6.20, which reflects the system in the “grand-canonical plane” 1/(8u)
versus h/u, a recent phase diagram obtained via the functional renormalization group (fRG) [37]
is shown. In the balanced limit, the study agrees well with two experimental determinations
of (Bu), [43, 271] as well as with a recent result obtained via LW theory [38]. While the critical
temperature in the balanced case is well understood, much less is known about the critical field
strength above which superfluidity gives way to the normal phase via a first-order transition.
There, determinations from fRG, experiment [43] and FN-DMC [39] are in proximity, however,
disagree with the LW approach (beyond the plot range) and a result from the e-expansion [314].

As remarked earlier, our results do not allow a quantitative prediction of the critical values. The
inspection of the magnetization EOS as well as the thermodynamic response, however, indicates
that the curvature of the phase boundary near the balanced limit is small, in line with the present
knowledge in this regime.

In the right panel of Fig. 6.20, an experimental determination of the “canonical” phase dia-
gram T /Ty ; versus relative polarization is shown [312] (symbols reflect experimental measure-
ments, the phase boundaries are linear fits). Additionally, the recent critical line from LW
theory [38] is shown for comparison. The agreement for the critical temperature carries over
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Figure 6.20: Phase diagrams of the spin-polarized UFG. (Left) Grand-canonical phase diagram
(Bp)~t vs. h/p as obtained via fRG [37] (Right) T/}, vs. polarization phase diagram as
measured in experiment [312] (gray error crosses) and compared to a recent determination via
LW theory [38] (dot-dashed lines). Critical values in both panels correspond to experimental
values from the MIT group [271] (red triangles) and ENS group [36, 43] (green triangles), LW
results [38] (orange triangle) and FN-DMC calculations [39] (dark triangles).

from the discussion in the grand-canonical plane.'® The critical polarization is again much
more the center of debate. The experimental measurement by the ENS group shows a large
uncertainty [43] such that other results lie easily within their errorbar.

For completeness, we note determinations of the second-order transition line based on NSR [299]
and ETMA [316], both of which predict a transition temperature for the balanced gas well above
T/T, 7+ = 0.2. This overestimation continues to the spin-polarized case until eventually unphysical
re-entrant behavior is reported, similar to the LW curve. Additionally, a RG study reports
quantitative agreement to the experimental measurement as well as the tri-critical point [59],
however, contains some arbitrary choice in the considered couplings, as remarked already in [13].
Finally, let us return to the left panel of Fig. 6.20, where also a pseudogap region is featured. Our
results at finite lattice sizes suggest the tentative conclusion that this region is small, if present
at all. However, an exact prediction is challenging at this point and requires the calculation of
more suitable quantities such as the density of states which is expected to show a pronounced dip
in the case of a pseudogap. Alternatively, a precise determination of the spectral function could
clarify the issue. From a stochastic perspective, this is troublesome because the computation of
these quantities involves an analytic continuation from imaginary to real frequencies. Although
this procedure is performed frequently, it demands exquisite precision of the numerical data in
order to yield reliable numbers. Generally, little is known about the pseudogap regime at finite
polarization, which makes an experimental comparison all the more desirable.

This concludes our discussion on the phase diagram of the spin-polarized UFG. A quantitative
determination of the full phase diagram from first principles is a challenging task and still absent
from the literature. The present investigation is not able to remedy this instance, however, marks
an important step towards the characterization of the phase diagram via ab initio methods.

8No determinations of the critical temperature from MC in the balanced case are shown in the above summary.
Several values have been computed before, which, if properly scaled to the continuum limit, show good agreement
to the values shown here [276, 277, 315].
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study year T[Ty s Pe (Bu)e (1)e
MIT experiment I [312] 2008 ~0.15 ~ 0.36 — ~ 0.95
ENS experiment [36, 43] 2010 0.157(15) 0.33(14) 3.13(29) 0.878(28)
MIT experiment IT [271] 2012 0.167(13) — ~ 2.5 —
FN-DMC [39] 2006 — 0.388 — 0.96
e-expansion [314] 2007 — — — 1.15
fRG [37] 2015 — . 2.5 0.83
LW [38] 2018 0.152 — 2.65 1.09(5)

Table 6.1: Various determinations for the critical quantities in the grand-canonical and canonical
ensembles.

6.5.2 CL & the future of the spin-polarized UFG

The above summary highlights the amount of knowledge on strongly-correlated Fermi gases
accumulated over the years. Many things, however, are left to be understood. Regarding the
future of CL in this endeavor, besides technical improvements that will be addressed further
below, it is certainly important to study pair correlation functions. From these, more revealing
quantities, such as the pairing gap and the condensate fraction, may be extracted. Additionally,
as our analysis for one-dimensional systems showed, it would be of interest to study so-called
shot-noise correlations for three-dimensional systems in order to properly resolve the exact nature
of pairing in the presence of mismatched Fermi surfaces.

With these advances, it might be possible to conclusively investigate the nature of the intermediate
polarized superfluid phases. As already remarked earlier, several mechanisms have been proposed
in the literature [48-53] but, to date, no experimental measurement has confirmed either of
them. Amongst the proposed variants, the FFLO mechanism has received most theoretical
attention [54] and constitutes the perhaps most interesting phase as it features a spatially varying
order parameter. It is expected to be stable only at very low temperatures. The access to low
temperatures, however, is challenging in both experimental and theoretical efforts. In the latter,
searching for this elusive state of matter may therefore be best done in the ground state. So
far, MC studies in this regime have relied on the fixed-node approximation which introduces a
possibly severe systematic bias. The CL approach may help to circumvent this limitation and
first steps in this direction have been taken, as discussed in this chapter.

Experimentally, the challenge of addressing inhomogeneous pairing was for the longest time
limited by the position-dependent harmonic trapping potential. In these setups, the superfluid
phase is only present in a small fraction of the entire sample which renders measurements on the
spatial-dependence of the order parameter impossible. Recently, however, flat trap geometries
have been implemented to study ultracold Fermi gases [317, 318]. Although at the present
moment it is unclear how this broken translational and rotational invariance will be accessed in
experiment, it is conceivable that these sophisticated trapping techniques are capable of shedding
light onto this topic.
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A complementary route towards the detection of inhomogeneous phases may be the study of
mixtures of different atom species. The mass ratio between the particles may be exploited to
realize mismatched Fermi surfaces which in turn influences the pairing behavior. A potential
roadblock, however, could be unfavorable scattering properties which are challenging to predict
for general atom mixtures and rendered studies on systems with 6Li-*°K too short lived. A
promising candidate is a mixed system of '6'Dy-4°K for which stable realizations have been
reported recently [248].

The experimental advances in trapping and setting up ever more elaborate systems yields an
optimistic outlook on the near term detection of the exact phase structure of spin-imbalanced
Fermi gases. Also on the theory side, interest is again picking up speed. It seems that the hunt
for a clear observation of inhomogeneous paring is on.



7 Summary & final remarks

“There’s always a bigger fish.”

Qui-Gon Jinn

The central theme of this thesis is the study of strongly-interacting imbalanced Fermi gases.
The past two decades have seen remarkable and exciting advances, in both experiment as well
as theory, which have revealed the rich physical content of these systems. On the theory side,
however, the strong correlation between the particles causes serious problems in their quantitative
description and calls for reliable and systematic nonperturbative methods. Another major topic
of this work is to further push the development of efficient stochastic lattice approaches in the
context of nonrelativistic Fermi gases. To conclude, these two parts are briefly recapitulated,
and the current state of development is summarized. Finally, a brief perspective on possible
extensions of these advances is given.

7.1 Partl: methodological advances

As a first step towards a precise treatment of fermionic many-body systems, a suitable method
was needed. Our investigations relied on a fairly standard auxiliary field representation, albeit in a
somewhat specific incarnation regarding the exact nature of the auxiliary fields. The cornerstone
of such an approach is a decoupling of the interaction which ultimately results in a highly
nontrivial path integral. While this is the basis of a range of powerful Monte Carlo methods, a
nagging issue persists (and also plagues all other incarnations of Monte Carlo sampling) in the
case of fermionic systems: the infamous sign problem. It prohibits straightforward evaluation
of these high-dimensional integrals via importance sampling and ultimately leads to a severe
signal-to-noise issue. This essentially implied a roadblock in the study of nonrelativistic Fermi
gases of interest in this work.

The common theme of all approaches applied in this thesis is the use of continuous auxiliary
fields in a lattice representation of the physical model. This allows for the application of highly
efficient global update algorithms, similar to the ones often used to study lattice field theories
in the context of high-energy physics. First, the paradigmatic Metropolis-based hybrid Monte
Carlo method was introduced and subsequently extended to surmount a sign-problem in mass-
imbalanced systems through an escape to imaginary asymmetries. These methods have proven
suitable in the study of a variety of problems in the past, including several systems of interest in
this thesis.

The main workhorse of the present work, however, is based on stochastic quantization which was
found to be an exceptionally well suited tool to investigate ultracold Fermi gases. In particular,
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its extension to complex random walks, i.e. the CL method, turned out to be a “magic” approach
in this context, allowing us to access previously prohibitive problems with modest computational
effort. As the method has presently still some limitations regarding its mathematical justification,
progress has been slower than one would expect for a possible way around the notoriously
challenging sign problem. Hence, this thesis represents one of the first extensive studies of
asymmetric Fermi gases relying on this technique. Consequently, the technical part of this thesis
dealt with introducing the full formalism of this powerful approach in detail, as well as with the
discussion of possible shortcomings. Special emphasis was given to an intuitive presentation of
the concepts, which involved several toy problems to complement the methodological survey.
Moreover, the similar nature of all the mentioned heavy-duty numerical methods renders it
possible to generalize their implementation structure efficiently. As part of this thesis, the
gMacs package was developed with the purpose to simplify problem-specific implementations
in future applications.

7.2 Partll: the CL machinery at work

In the second part of the present work, these numerical techniques were put to use in order to
address the physical questions posed in the introduction. First, an extensive benchmark of the
lattice treatment with the HMC method was performed in the crossover from few- to many-
body systems in a one-dimensional geometry. This is a natural stepping stone towards higher
dimensional systems, as the reduced dimensionality eases the computational burden considerably.
However, since the impact of fluctuations is dramatically enhanced in lower dimensions, these
systems are intrinsically strongly interacting and therefore nontrivial to address numerically.
The insights on the quantities as well as on the numerical behavior of the approach laid the
foundation to later tackle the challenging problem of mass-imbalanced fermionic systems. Note
that the reduced symmetry puts these systems beyond the reach of analytic studies based on
the celebrated Bethe ansatz. An extension of the HMC method to imaginary asymmetries,
dubbed iHMC, was successfully applied to obtain results up to intermediate mass-imbalances.
As a consequence of the involved analytic continuation from imaginary asymmetries to real
mass-imbalances, the associated statistical error blows up towards large mass asymmetries such
that the approach is of limited use in this regime.

To mitigate this issue, the system was subsequently approached via the main method of interest
in this thesis, namely the CL approach. To the best of our knowledge, this marked the first
usage of this technique for the ground state of nonrelativistic fermionic systems. The success of
this initial study is backed up by cross-checks with the iHMC method which yielded an excellent
match in the applicable parameter ranges and continued to be smooth beyond the reach of the
iHMC method. The main result of this study was the determination of the energy dependence
on the coupling strength for a variety of mass imbalances.

Despite excellent agreement among several methods for attractive interactions, the method
displayed problematic behavior at repulsive interactions. A later study based on the worldline
algorithm [122, 123] revealed that the CL method indeed yielded faulty values at large repulsions,
as conjectured already from the broad observable distributions. At this point, this marks a
limitation of our present implementation of the CL method and certainly calls for an in depth
investigation of the issue in the future.

For attractive interactions, however, no problems were detected which allowed the study of



7.3 WHAT THE FUTURE MAY HOLD 149

pairing in the form of two-body correlation functions. The central quantity under investigation
was given by the density-density correlation function in momentum space, which displays clear
signals of fermion pairing. While FFLO-type ordering was expected for the mass-balanced but
spin-imbalanced case, it was unclear how the pairing correlations would evolve in the presence
of finite mass asymmetry. As it turned out, the pairing still happens at finite center-of-mass
momentum, however, with shifted peaks in momentum space. To the best of our knowledge,
this was the first observation of this effect. Since shot-noise correlations are often measured in
experiment, it is conceivable that this prediction might be checked in the near future.

Perhaps the most extensive study in this thesis was undertaken for the spin-imbalanced unitary
Fermi gas. The main quantity of interest was the density equation of state, which was computed
to excellent precision across a wide parameter window. Thermodynamic relations allowed for the
determination of a range of other quantities and comparisons to a broad range of experimental
and theoretical results in the balanced limit revealed the excellent accuracy of our results.
Most of our investigation took place in the normal phase above the superfluid phase transition.
This is, in part, caused by the occurrence of some subtle technical reasons but also a consequence
of the employed lattices sizes in our CL studies, which, to some extent, obfuscate the study
of critical phenomena. Both of these shortcomings, however, may be systematically cured and
are not principal roadblocks towards the full characterizations of these systems also in the
superfluid phase.

As a first extension towards the investigation of possible FFLO-type ground states in three-
dimensional Fermi gases, projective calculations at 7' = 0 have been presented. While the
presented numerical results must still be considered at a preliminary level with respect to the
numerical control of several factors, the study yields an optimistic outlook for the future study
of pairing correlations in this regime.

The large range of computed thermodynamic quantities enabled us to draw conclusions about
the phase diagram in the temperature versus polarization plane. First, we found indications for
a flat phase boundary near the balanced case, in line with previous arguments in the literature.
Additionally, we argued against the existence of an extensive pseudogap regime above the critical
temperature based on the absence of a suppressed magnetic response of the system. Moreover,
we have predicted a variety of thermodynamic properties for spin-imbalanced systems which, to
the best of our knowledge, have been computed for the first time at a quantitative level. Hence,
it will be interesting to see whether these predictions stand the test of time with respect to
further theoretical developments and possible experimental measurements.

7.3 What the future may hold

This thesis constitutes an early stage in the development of the CL method for nonrelativistic
systems. While solid results have been achieved so far, several technical improvements will help
to cure some of the childhood sicknesses and to further establish the CL method as a valuable
member of the numerical toolbox.

Some of the proposed technical improvements suitable for the CL method include:

Numerical stabilization The repeated matrix multiplication of the transfer matrix during the
imaginary-time propagation causes the spread of the eigenvalues to grow exponentially.
Ultimately, floating point arithmetic will not be able to resolve this spread and the lowest
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lying eigenstates will be washed out, resulting in an ill-conditioned matrix. This issue
may be mitigated via suitable matrix decompositions which yields a stabilized numerical
propagation in imaginary time. While it was found to be omissible for the HS transformation
and system sizes in this work, such a stabilization scheme will allow for the study of larger
systems at larger imaginary times in three spatial dimensions.

Improved operators A route towards better reproducing the continuum physics without resorting
to possibly prohibitive lattice size are improved operators. The idea is to better match
the low-energy scattering properties on the lattice such that an arising finite range effect
is suppressed. Initial studies in the ground state have been conducted [91]. However, no
implementation at finite temperatures is on the market as of yet.

Alternate HS transformations Inspired by the success of bounded HS transformations in our
HMC calculations, the specific form carried over to the CL method. The complex field,
however, causes an unbounded imaginary direction which must be counteracted with a
suitable mass-like regulator term. Conveniently, it is possible to construct a variety of HS
transformations due to the idempotency of the fermionic density operators. This could
allow for “self-regulated” versions of the transformation, which circumvents the need for
the regulator. A possible version, for instance, is the decomposition in the pairing channel
rather than the density channel, which is routinely carried out in analytic studies and could
provide a viable option for an optimized CL implementation. Possible bottlenecks in this
regard include the larger Fermi matrices, which would at least have to be 2V x 2V and the
possible need to resort to a conjugent gradient type inversion of these large matrices.

Optimized trial wavefunctions For the projective formulations, a more favorable choice of trial
wavefuctions beyond simple Slater determinants may help to confine overly broad distribu-
tions of observables and thus considerable improve the statistics and range of accessible
couplings. The obvious example is given by the BCS-type wavefunction, which already
favors pairing and has been shown to be efficient for the three-dimensional balanced
UFG [107].

Particle projection In light of possible finite-size scaling it may be beneficial to project to a fixed
particle number at finite temperature, i.e., the canonical ensemble. Recent advances have
been made with this approach in light of the UFG [275]. Further, it was recently shown
that discarding all but the lowest lying singular values helps to reduce the computational
cost of finite-temperature calculations [282, 319], which could also be an interesting avenue
to explore with the CL approach.

Once these technical refinements are addressed, exciting physical systems await to be investigated
with the lattice approaches developed in this thesis. Examples include recent reports on the
realization of stable Fermi-Fermi mixtures with 61 Dy-4°K by the Innsbruck group [248]. A precise
measurement of the equation of state for these mass-imbalanced systems at finite temperatures
is absent from the literature and would be a natural extension of the present thesis. Another
exciting possibility in this regard is highlighted by our results for one-dimensional systems, which
reveal the great potential of shot-noise correlations to investigate subtle effects arising from mass
asymmetry. It will be interesting to study this quantity in higher dimensional counterpart, in
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particular for the unitary Fermi gas, which could provide the key step in the search for the elusive
FFLO phase conjectured to be present at unitarity (see, e.g., [56]).

Moreover, the advent of quantum gas microscopes allows for the precise measurement of cor-
relations in two-dimensional systems. Recent experiments even considered mixed-dimensional
atomic gases in the crossover from one to two spatial dimensions [320]. Experimentally, this was
realized via a direction-dependent hopping term in an optical lattice. Naturally, this reduces the
symmetry of the underlying Hamiltonian and introduces a severe sign problem in conventional
Monte Carlo approaches. In this context, a particular interesting topic concerns the evolution
of pairing correlations in imbalanced gases: On the one hand, it is known that correlations of
the FFLO type are the leading instability in one-dimensional lattice systems across most of the
physical parameter space. On the other hand, little is known on the nature of the FFLO in
two-dimensional systems. It will be interesting to see whether the CL approach is able to address
this dimensional crossover reasonably well.

Finally, it is conceivable that the CL method could spread into the toolbox of condensed matter
physics, where auxiliary field methods are routinely applied. A paradigmatic field of interest is of
course the repulsive Hubbard model away from half filling, which is a model candidate brought
in connection to high-T, superconductors, but features a severe sign problem. The difficulty here
lies in the solution of the problems observed in ground-state calculations of dilute repulsive Fermi
gases. At this point it is unclear whether the failure is caused by numerical shortcomings (such
as an overlap problem) or by a fundamental flaw of the CL approach itself. A resolution of the
issue, however, would pave the way towards the study of this long-standing problem.

It is important to note that, despite the various success stories, the CL approach remains a
method under construction. Our understanding of its shortcomings has come a long way ever
since the initial proposal of this approach in the early eighties, but we are still lacking a priori
insights on its applicability without performing actual simulations.

At the end of the day, there is no “silver bullet” that will solve all our sign problems. The complex
Langevin method is no exception and there will always be theories for which the approach fails
to deliver reliable numbers. In the context of nonrelativistic Fermi gases, however, this thesis
presents stable and physically sound results for otherwise intractable problems. The method
therefore constitutes a step forward towards a better understanding of the challenging and
fascinating world of asymmetric quantum matter.
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A Many-body derivations

In this appendix, we detail some derivations in the context of the auxiliary field framework. An
educational overview on the finite-temperature as well as the ground-state formalism can be
found in [100, 102, 321], where also derivations beyond the scope of this work are presented.

A.1 Bounded & continuous auxiliary field transformations

The particular auxiliary-field transformation used in this work is given by Eq. (2.4.2a). To derive
this expression we start with an expansion of the two-body term

. AT
o 9ATHD Z (]dm(pri) (A.1.1a)
n=0
. AT
- 1+prlZ 9" (A.1.1b)
:1—|-ﬁTpi( e 9—1) (A.l.1c)
=1+pp B (A.1.1d)

where the second equality is due to the fact that p, is a fermionic density operator. The
decomposition in Eq. (2.4.2a) is given by

U Td “ . ~ .
e IATPP, — /_7T Q—f [1 + pyAsin qS] [1 + p Asin cZ)] (A.1.2)

which can be shown to be equivalent by noting that

/ dp =1 (A.1.3a)
% dd) Pysing =0 (A.1.3b)
25 ~ 2 A%
7 /7T d¢ A%pp, sin® ¢ = 5 Py (A.1.3¢)
which leads to the equation
A% IR

2
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and thus sets the coefficient
A=V2B=/2(e 279 —1). (A.1.5)

For repulsive interactions, i.e. g > 0, the coefficient A is imaginary which leads to a complex
action and thus a phase-problem.

A.2 Trace over Fock space

In this appendix, we want to derive the relation

»\T n
H oXis Vi [Ak]z‘jwa‘] = det
k

As a first step, we consider the case of only one factor in the product, i.e. the trace over a single

Tr

1+ HeAk] : (A.2.1)
k

one-body operator. Assuming the matrix A is diagonalizable throuh a unitary transformation
(as is the case for hermitian matrices) we can always find a suitable diagonal representation:

Tr {ezii @A”J’f] =Tr {eziikl @U’T’“D""U”%] (A.2.2a)
=Tr [ezkl *LDWA“] (A.2.2b)
=Tr {ezk A(k>’2£ik] . (A.2.2c)

where A are the eigenvalues of A. Note that the transformed creation and anihilation operators

)}L and Y, have only been rotated by a unitary transformation and therefore still obey the
fermionic anticommutator rules. We can now evaluate the trace over the corresponding Fock
space:

Tr {eEk A(k)f(if(k} = Z< n |ezk A Xk X |n) (A.2.3a)
=" (n|[[ %% n) (A.2.3b)

n k
= Z<n | H [1 + (Mo — 1))2}2)2,{] |n) (A.2.3¢c)

n k

L1+ (A.2.3d)
k

= det [1 +e?] . (A.2.3¢)

For multiple factors in Eq. (A.2.1), however, the simple diagonalization strategy is not applicable.
The result holds nevertheless, as can be shown by considering the relation for two factors

- R
Tr ezij wiA“wjezii i B”zp’] = det []l + eAeB] . (A.2.4)

The key step is to consider the Baker-Campbell-Hausdorff (BCH) formula which gives a formal
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solution Z for the problem
e? = eXe¥ (A.2.5)

for generally non-commuting matrices X and Y. The result may be written as an infinite series
of nested commutators whose first few terms read

1 1 1
Z=X+Y+ §[X, Y]+ E[X’ [(X,Y]] — E[Y’ (X, Y]] + - (A.2.6)
In order to treat this infinite sum we consider the commutator of the exponentiated single-particle

operators (to simplify the notation, we assume sums over doubly occurring indicies):

[@Aiﬂ/;jv Q;IBiszj] = &IAij&quz;]tBka;m - Q;LBkqum"Zinj&j (A.2.7a)
= Ay By, [01000,, — Dl 1)) (A.2.7h)
= A;;By, [01(85, — L)) — U, 010 (A.2.7¢)
= Ay By, — Ay By, [O1010,,0; + 0l 1000, (A.2.7d)
= Ak Bn 0 m = Aij By [V Gy — G0y + b 9105 (A2.7Te)
= Ay By, — A B Ol (A.2.7)
= Ay By i, — By Ayl (A.2.7g

= YZI [A, B]ij@;j (A.2.7h

where we used the fermionic anticommutator rules. For all higher terms it is now possible
to repreatedly subsitute the commutator involving fermion operators with a matrix that is
sandwiched by the creation and anihilation opertators. Ultimately, this allows to write

- . . - 1 1 . . .
Ol Ay, O Bigy = 0] {A+B+ 5lA Bl + A [4, 5] +-~}“wj = O M5, (A28)
ij
where M is the formal solution of
M =In [e?e] . (A.2.9)

We have arrived at a single operator in the product, for which the relation was shown above.
Thus, we may write

Tr [e@MU’Z’j] = det [1 + eM] = det [1 4 e?eP] (A.2.10)

which proves Eq. (A.2.4). For more than two operators in the product we may simply repeat
this reduction arbitrarily many times.

For completeness it is noted that an alternative proof may be found in the appendix of Ref. [100].
Even beyond that, the above relations may be proven by means of Grassmann numbers.



158 CHAPTER A — MANY-BODY DERIVATIONS

A.3 Observables with auxiliary fields

Our aim is to derive the expression for the observables given in Eq. (2.6.3c). We start by taking
the derivative with respect to the source term

S 1020])
O)=%—"5;7 ‘ (A.3.1a)
/ D¢ —Tr T¢(ﬁ, 0) 70 T¢(9,0)} (A.3.1b)

J=0

Assuming 0] represents a single-particle operator in the appropriate basis we may convert the
trace in the expression to a determinant by using the identity

Tr[A] = det[1 + A] (A.3.2)

which holds for single-particle operators, or products thereof. Thus we may write

~ 1 0 - ~
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J=0
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where for the third equality we have used the fact that
det, [1 + T}, (8,6) e’© T,(6,0)] = det M,. (A.3.4)
J=0
By exploiting the relation Trln A = Indet A we write
. 1 o . Jon
)= % / Do det My, = Trln [1+7,(8,0) ¢/ T,(0,0)] y (A.3.50)
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— Z/m det M, Tr {Mq;&] 1+ T4(8,60)e’° T,(6,0)] JO} (A.3.5D)
1 ~ ~
=3 / D¢ det My, Tr [T,(0,0) Mz T,(5,6) O] (A.3.5¢)

which is our final expression for the expectation values of arbitrary observables.

A.3.1 One-body density matrix

An important observable is the to one-body density matrix which is given by

pii(¢) = <¢jfﬂzgj>¢~ (A.3.6)



A.3 OBSERVABLES WITH AUXILIARY FIELDS 159

As remarked in the main text, in this thesis we consider the case = 0 such that Eq. (A.3.5)
reads

WL, = % / D det M,, Tr [M; T, (8,0 0f i, ] (A.3.7a)
L 6wt T 0+ G0 EOGG] . (aam)

where the second equality was obtainted by inserting the definition of the Fermi matrix

M, =1+T,(8,0). (A.3.8)
By using the matrix relation
1—-(1+A)t=(1+A)14 (A.3.9)
we may write
W i) = % / D¢ det My Tr{[1 — (1 +T,(8,0)) )9}, } (A.3.10a)
- ;/m; det M, Tr [(1 — M)l ab,;] - (A.3.10Db)

Furhter we may write the trace over the orthonormal coordinate-space basis {|y)} with

ly) =15y 0) (A.3.11)

and such that
Tr [(1 — Myl by, = Tr [19!4,,] — Tr [M1 ¢4, (A.3.12a)
= ng@;@oj\ y) — Ey}y\Mq& O ol y)- (A.3.12b)

With

UEbosly) = 1), (A.3.13)

it follows that
Tr [(1— M)l h,,| =0, — (G 1(Mg) 7Y i) (A.3.14)

such that the one-body density-matrix is really just the coordinate space representation of the
inverse Fermi matrix. In exactly the same fashion, we could have computed momentum-space
quantities with the only change being the usage of the momentum-space single-particle basis.






B Error estimation of
correlated random samples

In this appendix, we briefly detail useful derivations and techniques necessary for the unbiased
estimation of statistical errors of correlated random samples. We begin by deriving the general
expression Eq. (3.2.9). Further we define the autocorrelation function along with some of its
properties as well as the integrated autocorrelation time. Subsequently, we provide a brief
overview on standard techniques to estimate the unbiased error. More extensive derivations can
be found, e.g., in [114, 322].

B.1 Autocorrelation function & integrated autocorrelation time

Random samples generated by MCMC algorithms are generally correlated. To correctly estimate
the statistical error we have to consider the variance of the mean, given by the quadratic
fluctuations around the mean value:

Var[0] = <(6— <O>)2> (B.1.1a)
2

_ <<;[zi:oi_<o>) > (B.1.1b)

:% = (0,0,) - (0 (B.1.1c)

= %Zcu — 7). (B.1.1d)

Here, we have used the linearity of the expectation value and the relation

(0) = <]1VZO> = LS00 =) (B1.2)

(2

Further, we assume the samples to be taken from the equilibrium distribution of the Markov
process, that is, after some warmup time to avoid initialization bias. The last line of Eq. (B.1.1)
implicitly defines the autocovariance function C'(r) which only depends on the sample lag (i.e.
the lag in Markov time) as a consequence of the equilibrium. This allows us to rewrite the double
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sum as a single sum with an appropriate weighting function:

_ 1 N—1
Varl0] = p (N — |r) C(r) (B.1.3a)
—1
_ % ( N |]7\‘[|) Cr) (B.1.3b)
r=—N+1
N—1
- ](\?) 1+2) ( - ’;7) I‘O(r)] (B.1.3c)
r=1
_ Var[O]
- (1+27,,) - (B.1.3d)

Here we used the fact that C'(0) = Var[O] and defined the autocorrelation function

_C(r) _ <Oi+r0i> - <Oi+r><0i> _ <Ol+r01> - <O>2
Folr) = 7o) = Var[O] = Vao] (B-14)

where r denotes the “sample lag” (in continuous signal processing this corresponds to the time lag).
The last equality only holds once the equilibrium distribution is reached, since then the linear
expectation values are independent of i. It follows, that in this limit I'(0) = 1 and |I'(r > 0)| < 1.
Furthermore, the quantity eventually decays exponentially in the limit of large r.

The last line of Eq. (B.1.3) defines! the so-called integrated autocorrelation time as

o 2 ( — |]TV) To(r) "2 3 T, (B.1.5)

r=1

To determine T

‘nt» however, the above formula may be problematic. In fact, the variance of 7;

nt
diverges in the limit of N — oo as the actual signal of the autocorrelation dies off exponentially
and every term in the sum then adds some amount of noise (which has approximately constant
amplitude). In practice it is therefore useful to compute 7, as a function of the considered
samples. Once a window of (approximately) constant 7, is identified, the value of the plateau
can be considered a faithful estimate.

Finally it is mentioned that a straightforward calculation of I' 5 () with Eq. (B.1.4) is cumbersome
and numerically expensive for a large number of samples. However, by realizing that Eq. (B.1.4)
is nothing but a convolution of the signal with itself, we may exploit the convolution theorem to

efficiently calculate the autocorrelation function using fast Fourier transforms (FFT).

B.2 Resampling techniques

Besides the direct calculation of the autocorrelation function and the extraction of the integrated
autocorrelation time, there are other methods to estimate the statistical error of the mean in an
unbiased way. Here, we outline some of the most commonly used approaches and also perform a
comparison on a production dataset.

Moreover, it is possible to infer the integrated autocorrelation time from a correctly estimated

!Note that there exist slightly different definitions in the literature.
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uncertainty o5 by rewriting Eq. (B.1.3d):

Tint = % @ZEE = 1) - % ( % - 1) . (B.2.1)

Again, o, denotes the naive, i.e. uncorrelated, estimate of the uncertainty.

B.2.1 Binning

The idea of binning is to create a new sequence of random samples by combining (hence binning)
subsequent samples into an average sample:

(0) (0)

o = Y27 Qo (B.2.2)
where O§0> denotes samples of the Oth binning level, i.e., the original series. The resulting
sequence is only half as long as the original sequence, however, less correlated. This can be
considered the first binning level. The naive error estimate for this sequence then gives a better
estimate of the true error due to the lower correlation between the new samples OED.
Repeating this procedure yields a sequence of error estimates {ag)} as a function of the binning
level . Once a plateau is reached, the value of the plateau can be considered an unbiased estimate
of the true error (to show this, the central limit theorem may be used). Eventually, though,
the binning level becomes too large, which results in a very short sequence of samples (the
length decreases exponentially fast) and the plateau will either break down or be nonexistent.
In the former case, the procedure simply has to be cut off earlier. The latter case is more
problematic and highlights that the autocorrelation is much larger than the amount of samples
in the simulation. In such a case, much more simulation time is needed for a correct uncertainty
estimate. An exemplifying binning analysis is shown in the top left panel of Fig. B.1.
A major benefit over other error estimation methods is the possibility of online binning, that is,
during the sampling process (see, e.g., [323] for a recent proposal). For correlation functions,
which come in the form of large arrays, binning is often the only efficient option since storage of
the full Markov chain of such a quantity is highly disk-space intensive. Moreover, binning is also
relatively cheap in the post-processing and is therefore often the method of choice.

B.2.2 Jackknife

Jackknife resampling is a relatively cheap, yet accurate, tool and is most commonly used in the
post-processing of MCMC data [115, 324]. The idea is to produce a sequence of averages {O,, }
where the n-th sample is deleted from the original sequence:

-~ NO-O

0, =——"7om". B.2.3
N denotes the total number of samples. The variance of this new sequence is the same as the
sample variance of the original values [115]. So far, however, the estimate is still biased in the
same way the naive guess for the error is. To account for correlation, the strategy is similar to
binning: instead of deleting single entries in the sequence, we group subsequent samples into

blocks of length M. This results in a series of Nz blocks which we now repeatedly delete according
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to the above prescription to obtain averages. With increasing block length, the estimated error
converges to the true error.? An example of jackknife resampling is shown in the lower left panel
of Fig. B.1.

A major benefit of jackknife resampling is that it generalizes to estimators other than the sample
mean. Specifically, we may compute a new dataset as a function of the sampled Markov chain
via M,, = f({O;.,}) and subsequently perform the same procedure as for the original series. In
this way we do not have to bother with error propagation, which is often challenging in practice.
Moreover, this procedure respects non-linear effects whereas plain error propagation is based on
linearization.

B.2.3 Bootstrap

The strategy of bootstrap is to resample an existing Markov chain {O,} to obtain a new sequence
{Q,} of equal length. This is done by randomly drawing N times out of the N original samples
with repetition and subsequently taking the average. Repeating this sequence for L times yields a
distribution of the L averages that, according to the central limit theorem, is normally distributed
around the true mean. The corresponding standard deviation is the unbiased estimation of
the variance of the mean. Note that such a procedure produces (slightly) different results for
every run as it involves random resampling of the original dataset. Therefore, especially in the
statistical literature, bootstrap is sometimes referred to as a special kind of Monte Carlo method
to estimate the error. The behavior as a function of the iteration number L is shown in the lower
right panel of Fig. B.1.

The method has a similar origin as the jackknife method and like before, we have to extend
this procedure to blocks in order to account for correlation. So, rather than resampling single
measurements, the series is again partitioned into blocks and entire blocks are resampled with
repetition. The results of this procedure are shown in the lower left panel of Fig. B.1.

Like jackknife, the bootstrap method allows for the generalization to arbitrary functions of the
original samples. Generally, bootstrap performs slightly better than jackknife, however, it comes
at a larger numerical price due to multiple iterations [115]. Especially for a large number of
samples, jackknife is therefore the method of choice.

B.2.4 Comparison of methods

To benchmark these methods versus each other, we apply the techniques discussed above to a
production dataset of 10% correlated samples for a 1D balanced Fermi gas (although the physical
parameters do not matter for the conclusions of this section). The results are summarized
in Fig. B.1.

In Tab. B.1 we compare numerical values for the integrated autocorrelation time and the standard
error of the mean. A comparison to the naive estimate reveals that neglecting the correlations
between the samples underestimates the statistical error by a factor of ~ 20. For this dataset, all
methods yield consistent results for both quantities, albeit, at varying effort.

The practical conclusion of this analysis is: in post-processing, use jackknife. If online binning is
required, use binning. However, any method will do.

2In fact, it may be shown that this is a conservative estimator, that is, the computed variance is greater or
equal to the true variance. For a proof see, e.g., [325].
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Figure B.1: Comparison of various error estimation methods. (Top left) Autocorrelation function
I' as function of sample lag N. Additionally, the integrated autocorrelation is shown as a function
of the sample lag. (Top right) Estimated uncertainty versus binning level. The dashed horizontal
line shows the estimated overall error. (Bottom left) Uncertainty estimates from Jackknife (blue
squares) and Bootstrap (orange dots) as function of the block size on a semi log scale. (Bottom
right) Uncertainty estimates from Bootstrap versus iteration number.

integrated autocorrelation time 7,

standard error of the mean o4

naive estimate — 0.000690
direct evaluation 192.36 0.013543
Binning 263.13 0.015834
Jackknife 198.81 0.013768
Bootstrap 191.67 0.013519

Table B.1: Comparison of autocorrelation time (in units of samples) and standard error of the
mean from various methods.






C Scales & relations for
the ideal Fermi gas

When studying interacting Fermi gases it is instructive to consider the noninteracting Fermi gas
as a first reference. Furthermore, the corresponding noninteracting quantities are often used
as dimensionful scales to normalize numerical results. In this appendix we briefly introduce
important relations and derive the scales necessary for the main text. An excellent and detailed
description far beyond this appendix may be found in [298].

C.1 Fermi-Dirac distribution

The energy distribution function of an ideal Fermi gas at given temperature T = B! and
chemical potential p is given by the Fermi-Dirac distribution

1

n(e) = T opem (C.1.1)
where ¢ denotes the energy. Accordingly, thermodynamic quantities may be obtained by the

weighted integral

(0) = / de O(e)n(e). (C.1.2)

Generally, these expectation values can only be obtained by numeric integration, although
several recursive relations of these so-called Fermi-Dirac Integrals exist (see, e.g., [298]). At high
temperatures (and/or low densities) the gas becomes classical and well-known relations from
classical thermodynamics apply. In the zero-temperature limit, where 8 — oo, energies are only
occupied up to the Fermi energy ep and n(e) becomes a step function as shown in Fig. C.1. In
this case, many properties are easy to evaluate, as shown below. Beyond the exact T' = 0 limit,
it is possible to perform a Sommerfeld expansion to obtain the temperature dependence to low
orders of T.

The above expressions are valid for the continuum. To properly normalize numerical results
from lattice calculations, however, we need the corresponding lattice expressions. Therefore, we
rewrite Eq. (C.1.2) as a sum over all possible momentum states on the lattice:

(O = Y _nlez)O(R), (C.1.3)

k
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Figure C.1: Fermi-Dirac distribution at various temperatures.

where €; denotes the energy for the momentum k and is given by the dispersion relation

€. = 5 - (C.1.4)

Finally, the one-body partition function is given by
,5£
Qo= e o, (C.1.5)
k

which is valid for a single particle of a single species o. For a spin—% system with species o € {1, ]},
we write

Q=014 +Q, (C.1.6)

which is used as a prefactor in the virial expansion (see Eq. (D.1.3)).

A straightforward evaluation of both the lattice and continuum quantities is possible with standard
integration routines. However, for some unfavorable combinations of 5 and pu, cancellations and
subtle numerical effects could lead to unphysical values due to failure of floating-point arithmetic.

C.2 Noninteracting quantities at zero temperature

The full particle number is given by integrating the Fermi-Dirac distribution over all possible
states while considering the multiplicities of the states. This is most conveniently carried out in
momentum space:

d?k 1
No) = 2.1
< cr> V/(Qﬂ-)d 1+eﬁ<5k,gfﬂo)7 (C )

where V = L¢ is the spatial volume of our system. Again, this integral cannot be performed
analytically for arbitrary 1. At zero temperature, the integral simplifies to an integration over a
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Quantity 1D 3D
Fermi momentum kr o ™, (677271(,)%
Fermi energy Epo = ];;Z iwzn?j ﬁ(&r%a)%
density N, ’CFTa 6m2k3 -
Cnergy EFG %N{:‘F %NEF
pressure P = <?TV>N,T 2 = 2peg 2F = 2neg
compressibility Kpg = + a—}’))Ty %% 3 %
spin susceptibility Xp = (@}i[ v %i %é
specific heat Cy/N =+ (‘?—g)v v 0 0

Table C.1: Quantities for the ideal Fermi gas at zero temperature in dependence of the Fermi
energy. Note that the top three quantities are given per spin species whereas other quantities are
for total thermodynamic properties of a spin—% system.

d-dimensional sphere whose radius is given by the Fermi momentum:

dik
(N,) =N, = vﬁgkh o (C.2.2)

The above expression is readily evaluated by using the d-dimensional solid angle

d %)
/ddk: - 27Td/ dk k41, (C.2.3)
I'(3) Jo

We may rearrange and obtain an expression for the Fermi momentum of a single spin species in

arbitrary dimension

k%dff = [delw%df‘ (Z) na] . (C.2.4)

For d = 1,2,3 the values of the gamma function are given by I'() = 72, I(1) = 1 and
r3)= %77%, respectively.

The Fermi momentum and Fermi energy define the physical scales in any fermionic system
and are regularly used to normalize other thermodynamic quantities. In Tab. D.1 all relevant

quantities for this work are summarized and given in terms of kp and €.






D The virial expansion

The virial expansion (VE) is an important tool to learn about high-temperature properties of a
given system. In this appendix we give a brief overview of its general framework, summarize the
relevant virial coefficients for balanced as well as polarized systems and derive expressions for
the thermodynamic quantities of interest in this thesis. A recent and extensive overview may be
found in [326].

D.1 General framework & balanced scenario

At large temperatures, i.e. small values of 3, the thermal wavelength Ay is much smaller than
the interparticle spacing, and with it, the scattering cross-section, which is proportional to A2,
decreases. As a consequence, only few-body correlations dictate the physics in this regime. This
motivates rewriting the partition function in terms of the N-body partition functions Q y:

Z="Tr [e’B(H’“N)] (D.1.1a)
= 3 Try e BH] eBuN (D.1.1b)
D Try [e=]
N=0
— i Qn V. (D.1.1¢)
N=0

where Tr, denotes the trace over all N-body states. The last line implicitly defines the fugacity
z=ePn, (D.1.2)

which is a small quantity if Su is large and negative. In this case, we may expand the grand
potential O = —37'1In 2 in terms of z. After some arithmetic, one arrives at the usual form of
the virial expansion for the balanced gas

Q=—371Q, > z"b,. (D.1.3)
n=1

where (), denotes the single-particle partition function defined in Eq. (C.1.6). The coefficients
b, are called virial coefficients and are generally unknown. To obtain the n-th order coefficient,
however, it is “only” necessary to solve the n-body problem, which becomes a challenging task
with increasing particle number. For the UFG, only the first few virial coefficients are known to
sufficient precision (see below).
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In practice it is useful to single out the interaction effects such that the expansion reads

Q=004+ A0=00 4 571Q, > 2"Ab,. (D.1.4)
n=1

with the noninteracting contribution Q(°) and
Ab, =b, — b (D.1.5)
where bflo) are the noninteracting virial coefficients given by
N (D.1.6)

The values for the first few coefficients of the UFG are

Ab; =0 (D.1.7a)
1
Aby = — D.1.7b
2 \/§ ( )
Aby = Aby; + Abyy ~ —0.3551030264897 (D.1.7¢)
Abgy + Abys + Ab
Ab, = —3L + 213 20 0.078(18) (D.1.7d)

where Ab, is known exactly through the Beth-Uhlenbeck formula [327] and Ab; may be obtained
numerically up to high precision [328]. There exist several determinations for the coefficient
Ab,, however, with some deviations among the various methods and experiment. The above
fourth-order coefficient is taken from a recent MC determination [329], where a comparison to
other determinations may also be found.

In the literature, the values for the virial coefficients are often provided for harmonically trapped
systems. The values may be translated to the homogeneous case considered here via

bE=b n2 (D.1.8)

where bl are the coefficients for the trapped system.

D.2 Virial expansion for population imbalance

To consider the effects of spin imbalance in a two-component system, we must write the above
expansion in the fugacities per spin species:

O=—571Q, > 22 b, (D.2.1)

n,m=0

with z, = e and Q; = Q,q + Qq; as in Eq. (C.1.5). Analogously to the balanced case, we
may write

Q=001 57Q, Y 2AD,,. (D.2.2)

n,m=0
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4 =0 =g =1 | W= = ot | Q= = gt
boo =0 boy = % boy = bg); bos = bé%)
Abyy =0 Aby; =0 Aby, =0 Abys =0
oy = o7 =3 by =0 19 =0 3 =0
by = 3 by = Abyy by = Abyy = %Abs biz = Abyy
Abyy =0 Abyy = Aby = Aby, = —0.17755 ... Ab,; = 0.1696(64)
==t | W= 19 =0
by = by byy = Aby = 5Abs bag = Abyy ?
Abyy =0 Aby; = —0.17755 ... Ab,, = —0.1840(128)
KD = 380 = 338 o =0
by = b b3y = Dby ? ?
Abgy =0 Abs; = 0.1696(64)

Table D.1: Virial coefficients for the noninteracting case (bg?,)n) and for the UFG in bare (b

173

nm)

and differential (Ab,,,,) form up to fourth order (taken from [329]). Coefficients are given for the
polarized case and related to the corresponding expressions in the balanced case.

Again, the interaction effects are encoded in

Abyyyy = by — i, (D.2.3)
and the noninteracting coeflicients can be related to the balanced case via
0 0 1o
%) =l = §b;> (D.2.4a)
B =0  VYnAm>o0. (D.2.4b)

The values for Ab,,,,, may be related to the balanced case and are summarized up to fourth order
in Tab. D.1. Note that at fourth order, two coefficients are necessary, stemming from clusters
with 3 4+ 1 and 2 + 2 particles, respectively.

The relation to the harmonically trapped system generalizes to

(D.2.5)

where again b, denote the coefficients for the trapped UFG.
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D.3 Expressions for thermodynamic quantities

Here, we provide some derivations for the virial expansion up to arbitrary order and provide
explicit expressions for the central quantities up to third order.
We start by introducing the useful relations

0 _ 0om 0w _ 0 9

Y = 4+ D.3.1a
Op  Ouy Op  Opp O Opy  Opy ( )
0 9 Opy 0 O, 0 0
Sl R T S D.3.1b
9h ~ Op, Oh  Op, Oh  op,  op, (D-3.1b)
as well as
0 0 0z 0
= — g e _ . 2
Bu, 0z, 0m, 0z, (D:5:2)

Thermodynamic quantities are obtained by appropriate derivatives of the partition function,
which boils down to considering the general expression

0" In 2

(6f) = 2 =
S Sy

(D.3.3)

To obtain an explicit expression, we consider Eq. (D.2.2) and start with the case (i,7) = (1,0):

olnZ 1 90 1 0
—_= =———— (0O + AQ 3.
56r) ~ 5w - ot LAY (D34

For simplicity, we only treat the interacting part and add the non-interacting part at a later

point:

OAQ 0 0
—_— = — |z — + z,— AQ D.3.5a
o(Bu) [ T3Z¢ ia%] ( )

0 0
= [ran tag) @ B A (D30
=Q, Z 22 (n + m)Ab,,,. (D.3.5¢)
n,m=0

An analogous treatment of the case (7, j) = (0,1) yields

0AQ 0 0
————=— |5 — 2z, — | AQ D.3.6a
oo = 1552 D35
=@, Z 22" (n —m)Ab,,,. (D.3.6Db)
n,m=0

It is straightforward to check that these expressions generalize to arbitrary values of (i, 7) such
that we may write

IHIAQ o 1- |
~ aGmaEhy - n;ﬂ 2 (n+m)'(n—m) by, (D.3.7)
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which is the central ingredient for all observables to follow. The final expression for an observable

given by
0" nz
O=—7———~—— D.3.8
D(3p)D(Gh) (D38
may be written as
0=00 +Q, Z 222 (n + m)t(n —m)iAb,,, (D.3.9)
n,m=0
with the exactly computable noninteracting part
9t 2O
o= _— =~ D.3.10
8(3) (6T (D310

In the following we give explicit derivations for a few thermodynamic quantities up to third
order.

D.3.1 Density

Oln 2 Q o
nyes(2p, 2)) = 908 = n(o)(zT,zi) + 71 Z 222 (n +m)Ab,,, (D.3.11a)
n,m=0

= n(o)(zT, z)) + % [2ZTZlAb11 + 3(Ab122%zl + Aleszf)] (D.3.11b)

Q Ab
= n(0)<ZT’ z)) + 71 [2sziAb2 + 373(2%% + ZTZE)} (D.3.11c)
D.3.2 Magnetization
0ln 2 Q nom
mVE3(ZT’ Zl) — m = m(O)(ZT’ Z¢> + 71 ZOZT Zi (TL — m)Abnm (D312a)
Q
= m(o)(zT, z)) + 71 (Abuz%zi — Abzlszf) (D.3.12b)
Q, Ab
= m(O)(zT, z)) + 7173 (Z%Zi — szf) (D.3.12c¢)






E Derivations of
thermodynamic relations

In this appendix, we show derivations of some thermodynamic relations as used in the main text.
Before jumping to the actual derivation, we note a few useful relations.

Firstly, the temperature derivative is best expressed in terms of the inverse temperature:

a9 989

o _0s 9
oT 0T O

= -2 95 (E.0.1a)

Furthermore, we write thermodynamic expectation values corresponding to the partition function
Z="Tr [e—ﬂﬁ—n@} (E.0.2)

as the derivative with respect to the appropriate coupling:

1 0mz\ 1 ( 02
©) =3 <8n>ﬁ -2 ((‘Xﬁn))ﬁ (E.0.32)
= Tr [e—ﬁ<ﬁ—né> é] . (E.0.3b)

E.1 Compressibility

The isothermal compressibility is defined as

1 /0n _ B[ On
= (58, =2 (o), .

which we can rewrite as the expectation value of the density fluctuations. Writing for the second

derivative
On 1 9 (1 02
(5(@“))7,7‘/_ VOo(Bp) (z awm) (E.1.2a)
1( 1 982 9z 1 92
v (_22 (B 0B " 2 a(ﬁu)z) (E.1.2b)
- %/(<N2> —(N)) (E.1.2¢)
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leads to

E.2 Magnetic susceptibility

The magnetic susceptibility, defined as

(o
XM = oh T7V,

may be rewritten as the fluctuations of the magnetization:

oM oM 1 02
"t = =~ Pam 7o (ﬁh) (Zawh))

1 82 8Z 1 922
( 22 0 )+Za(6h>2>

= B((M?) — (M >) V23 ((m?) = (m)?).

E.3 Specific heat

The specific heat at constant volume is defined as

o= w5,
kpN ~ VT kN \or

E.3.1 General expression

(E.1.3)

(E.2.1)

(E.2.2a)

(E.2.2b)

(E.2.2¢)

(E.3.1)

For general Fermi gases with arbitrary interaction, we can rewrite ¢y, as the expectation of the

energy fluctuations. First we consider the second derivative

OE a< 1az)

oT ~— T\ 298
102
=4 5<z )
- 1 9202  10°2
=5 ( Z2€)B8ﬁ+2862>
= 3% ((E?) — (E)?)
to arrive at
2
v =L () — ()

(E.3.2a)
(E.3.2b)

(E.3.2¢)

(E.3.2d)

(E.3.3)



E.3 SPECIFIC HEAT 179

E.3.2 Expression for the UFG

Alternatively, we derive an expression for the specific heat that holds at the unitary point. Our
goal is to derive an expression for the specific heat per particle cy as defined above. In the
following we set kp = 1 and thus make the above expression dimensionless (in our units).

=) =53] +(5 -] . E.3.4
<aT vy \oT) " \op), o) (E34)

By using the pressure-energy relation that holds for the UFG

3
SPV=E (E.3.5)
and
P N
(3) p—— (E.3.6)
ou .V Vv
we can immediately evaluate
E P
(3) - 3v<3> ~ 3N, (E.3.7)
/gy 2 N0/ py, 2
Additionally, we can use the fact that the particle number N(u,T, V) is constant:
ON ON ON
dN =0 = (—) dp + (*) dT + (*) dv. (E.3.8)
o v or) v oV)p,

With this, and the fact that dV = 0, follows:

N
(51),,~ (o), (5v) (539
or) n v or), y\oN/
Furthermore, we can write
0 0 oP V (oP V1
(i) :<i> <7> :7<7> S (E.3.10)
ON/ 7y OP) v \ON/) v N\ON/p, N2kp
where we again used Eq. (E.3.6) as well as the definition of the isothermal compressibility
1 <8N> 1 (871)
kr=—| =5 =— |5 . (E.3.11)
" N\oP),, n\oP),,
As an intermediate result, we have the expression
oF 3 1 (ON
o (28) 3Ly a2
or),yv 2nkp\0T/ ,

For the remaining two partial derivatives, we use the universal scaling valid at unitarity, i.e.
we can write any thermodynamic quantity as a dimensionful scale and a dimensionless scaling
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function. Thus, we write for the pressure
P =p~f(x) (E.3.13)

where we introduced x = Su and f(z) as our scaling function. By dimensional analysis, one finds

a= —g. We perform the partial derivatives:
or o f( ) WOf(x) 0z o 1 0f(x)
N= v( al) _— = Vi S — v S (E.3.14)
87]\7 a+1 8f( ) _ a+2 62f<l')
( o )T v V5 B ( oxr ) Vo Ox? (E-3.15)

Going back to Eq. (E.3.12), we can now evaluate the remaining partial derivatives by us-
ing Eq. (E.0.1):

(57) =557

= [ap )+ 520
ot f(z) — o2 3J(;(x x) (E.3.16)
— gl o) - [ 2]
= —app N
which then allows us to write
(gi) . Zv<‘;§>w: —g (WBPV + BuN] (E.3.17)

by again using Eq. (E.3.5). For the last remaining partial derivative we use Eq. (E.3.14) and

write
(g?f) e _52685 (Ve (E.3.18a)

—BW[( e 2D | e 2T @;] (E.3.18D)

_ V(e + 1) J;)(w ) Vgt 82;(2 z) (E.3.18¢)

~ Vet 1)5%25{9;@ By (gg) (E.3.184)

Vot 1)5a+23gj> Y (‘?;JZ) Ty(i;f)T ) (E.3.18¢)
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kpN?
v

= —(a+1)BN — Bu (E.3.18¢)

Again, we used the definition of the compressibility here. This takes out any partial derivatives
and we can collect all expressions to write for the specific heat

3V 3 3V 1 kN2
cv=—5~aBP = SBu+ S |(a+ 1)BN + AL
2N 2 2N? kp V
(E.3.19)
30 (a+1
=—-= —aP
2n \ Kp
With a = —g, as well as Kpg = %% and Ppg = gnaF, we can finally write the specific heat per

particle in dimensionless form:

3/T\ '[P
o= () { _ "”’FG} . (E.3.20)
2 \Tp Prpg Ko






F gMacs

A large number of MCMC implementations follow the simple pattern discussed in Section 3.2.2.
Often, these implementations involve a large number of generic tasks such as the setup of a data
persistence module or statistical evaluation of transient simulation data. It is common practice to
copy existing code into similar implementations for new algorithms. This often results in legacy
code that is hard to maintain and challenging to track (due to its many copies). gMacs tries to
mitigate these issues by providing a framework for heavy-duty MCMC simulations. Its two main
motivations can be summarized as follows:

Reduction of overhead coding: The list of repetitive tasks for different (yet similar) MCMC
implementations is long and ranges from data persistence via proper initialization to cluster
usage of simulation codes. gMacs provides pre-defined data structures that already come
with a lot of functionality, mainly for the handling of data through the pipeline from
calculation to storage. The package is set up in an easily extendible way, should further
functionality be required.

Consistent format for simulation data: Data is the reason for performing numerical calculations
in the first place. Often, however, its proper handling receives less attention than it should
and quick-and-dirty data dumps to text files without sufficient labeling is a common sight.
This is not only inefficient usage of disk space but also leads to a lack meta-information on
the origin of the data and thus hinders reproducibility. gMacs provides a standard data
format based on the binary HDF5 protocol that automatically stores all relevant meta data
along with the actual numerical results.

The package is written in Python3 and relies heavily on numpy , pandas and the HDF5
wrapper hbpy . Special emphasis was given to a lightweight implementation as well as to
usability, reproducibility and extensive documentation. From a computational standpoint, the
generic structure introduces a slight time penalty (mostly stemming from file I/O operations).
This is especially apparent in very cheap simple examples. For heavy-duty computations, as
applied in this thesis for instance, the introduced overhead is negligible and far below the
statistical fluctuations of CPU time between runs. In the following we highlight the main pieces
of the package and provide a minimal example of a Langevin methods for simple integrals.

F.1 Core concepts

At the core of gMacs are two main ingredients, which we introduce in this section: the base

class MarkovChainSampler and data capsules.
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DataCapsule

simulation
parameters observables
(scalar, array)

checkpoint 1

file history

|
log) checkpoint 3

meta information
current (sim_state)
checkpoint

Figure F.1: Schematic structure of a DataCapsule. Along with the wrapper to access these HDF5
files, this constitutes one of the two main functions of gMacs

MarkovChainSampler The class MarkovChainSampler isthe workhorse of gMacs . If utilized
correctly, it takes care of everything concerning the data flow of the simulation as well as sampling
itself. It represents our Simulation object that holds all information and functionality for producing
a random sequence of samples.

For a functioning implementation of a given MCMC algorithm, we just have to extend the
class MarkovChainSampler and provide implementations the functions random_sample () and
next_sample() in the child class. These functions determine the initial value as well as the
jump to the next state in the Markov chain, respectively. That’s all - everything else needed to
actually produce the random process is already included in the base class.

To actually compute observables, however, it is necessary to tell gMacs how to convert any
given configuration (also called sample or state) into a measurement of an observable. This
is done by providing Python callables (names of implemented functions). Note that the class
MarkovChainSampler can not be instantiated directly as this is realized as an abstract class,
i.e., it does not possess the required functionality itself. To use the class, we need to extend it.

Data capsules Data capsules represent the data structure in which gMacs stores all relevant
information in a self-descriptive manner. In the backend, this is realized as HDF5 files which
we wrap with the so-called DataCapsuleReader to efficiently read out the information in the
form of pandas.DataFrame . The structure is depicted in Fig. F.1. For technical reasons, there
are actually two separate files - data_file and the cp_file although the latter is optional.
There are various things bundled up in this structure:

simulation parameters: These are stored as attributes of the base group of the data file and
are essentially the parameters given to the simulation object. Their values may be retrieved
via DataCapsuleReader.get_attrs() .

file history: Holds information on any writing access to the data capsule along with meta data
such as username, system and timestamps.
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current checkpoint: Holds the current state of the Markov chain along with the necessary
information to seamlessly pick up from this point. Should not be touched by the user.

observables: This is where the results of measurements are stored. For technical reasons, there
are two types of observables: scalar and array which needs to be specified when we
register observables in the available observables dictionary. Any function that delivers
a single number (or a dictionary with key : number pairs) of any datatype qualifies as scalar
type. Anything that yields an array should be marked as such. The methods to retrieve
the data are type-independent and mainly given by DataCapsuleReader.get_average ()

and DataCapsuleReader.get_series() .

simulation state: Holds meta information on the simulation, for instance the sample number
in the sequence or the elapsed Markov time. Technically, this works in the same way as
observables except that no averages are computed for it - but otherwise information may
be added in the same way.

Checkpoints gMacs works with checkpoints (CP) as its ‘unit of measure’. When we specify
a run length, for instance, we want to set the option 'n_cp' . A CP is the same as any other
configuration, however, it represents a special point in the chain at which the current status
of the simulation is dumped to the data capsule. By default, observables are only computed
at checkpoints (but this can be toggled). This notion originates from the need of producing
decorrelated samples - CPs therefore are typically separated by an autocorrelation length (that
needs to be pre-determined or just crudely estimated somehow).

F.2 Hello World - Langevin style

As per usual, numerical packages ship with a “Hello World!” application. Here we provide a fully
working minimal example of a Langevin example of simple integrals.! The integral we want to
sample is given by

Z = / dp e (29” + 300" E/ dg e 5@, (F.2.1)

where we can consider S(z) the “action” of our 0 4+ 0 dimensional field theory. According to
stochastic quantization, the next step in the random process is given by

A
Phase 1: Setting up the sampler class Our main task is to suitably construct a sampler object

such that it performs the above random process. A few steps are necessary to achieve this:

1. First of all, we need to define an object that extends the base class MarkovChainSampler .
In the present example we called it ScalarlLangevinSampler . It is recommended to call

the constructor of the base class with super() .

IThis is in fact the same implementation that has been used to obtain the data for the 0 + 0-dimensional
examples in Section 4.4.
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class ScalarlLangevinSampler (MarkovChainSampler):

def __init__(self, xargs, sxkwargs):
super ().__init__(*args, *xkwargs)

# initialize the Langevin time measurement
self.sim_state.update({

'elapsed_cl_time': 0.,

'dtcl_cp': O.

b

# lists all observables with their corresponding returning functions

self.available_observables = {
'phi_square': {'func' : self.phi_square,
'type' : 'scalar',
'dtype' : np.float}

}

# initialize the noise amplitude
self.sig = np.sqrt(2 % self.param|'cl_time_step'])

# extract the parameters for the action.
self .mu, self.lam = self.param|'args']

def random_sample(self):
"""Create the initial sample of the Markov chain"""
self.sample = np.random.normal (0, self.sig)

def next_sample(self):
"""Create the next sample of the Markov chain"""

# add the drift
self .sample -= (self.muxself.sample + self.lam/6G*self.samplex**3
*x self.param|'cl_time_step'])

# add noise
self.sample += np.random.normal (0, self.sig)

# update the progress of the simulation
self.sim_state['elapsed_cl_time'] += self.param['cl_time_step']

# manage checkpointing
if self.checkpoint:
self.sim_state['dtcl_cp'] = self.param['cl_time_step']
else:
self.sim_state['dtcl_cp']| += self.param['cl_time_step']
self.checkpoint = self.sim_state['dtcl_cp'] >= self.param|'cl_time_per_checkpoint']

@staticmethod

def phi_square(sample):
return np.dot(sample, sample)

Listing F.1: Definition of the ScalarLangevinSampler
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2. A starting point for the random process has to be defined, which is done by implementing
the function random_sample() . In this simple case, this is nothing but a random number.

3. The central piece of the implementation is the method next _sample() . This function is
called to move from the current sample to the next state in the Markov chain, so this is
where the update of Eq. (F.2.2) is implemented.

Furthermore, we need to decide whether a checkpoint is reached or not. In our example this
is the case after a certain amount of Langevin time has passed. We set this time span by
providing a value for the key 'cl_time_ per_ checkpoint' in the parameters dictionary.
Finally, the elapsed Langevin time has to be tracked which can conveniently done via
an entry in the dictionary sim_state (this should be initialized in the __init()__
method).

So far so good - this is all that needs to be done to step through the Markov chain. However, we
did not tell gMacs to compute any observables yet. To do this, we need to specify functions
that map a sample value to an observable value. In our example the observable will be the
square of the field value ¢ and it is implemented in the static function phi_square(sample)
(the function does not have to be static nor does it necessarily have to be a class member).
Finally we “register” this newly available observable in the dictionary available observables .
That’s it - everything else is already taken care of. Lst. F.1 contains the full definition of our
ScalarLangevinSampler .

Phase 2: Running the simulation Having set up the sampler class, we now are in a position
to perform the actual simulation. All we have to do is to specify a dictionary that holds our
parameters, create an object of ScalarLangevinSampler and finally start the simulation by
calling the object. A Python script that does the job could look like the following listing.

parameters = {

'seed': 123, Define the initial state of the

random number generator.
'data_file': 'scalar_langevin.hdf5', Filename for the DataCapsule.
'file_access_mode': 'replace', Create a file or replace an existing one.
'n_cp': 10, Number of checkpoints to calculate

before terminating the run.
'observables': ['phi_square'], Observables to calculate and save at

every checkpoint (needs to be a subset of
the “available_observables ™).
'cl_time_step': 0.05,
'cl_time_per_checkpoint': 10,
'args': [-0.5, 1]

Time step in the Langevin equation.
Langevin time between checkpoints.

H OH HF OH OH K H H OH HE R H

Arguments for the action.

# Create a sampler with parameters and action and run the simulation.
sim = ScalarLangevinSampler (param—=parameters)
sim()

A few remarks on the parameters are in order:

m Some of the parameters ( 'args', 'cl_time_step', 'cl_time_per_ checkpoint' ) we
have used in our sampler class and thus they need to be in the dictionary for the simulation
to run. Otherwise a KeyError will be thrown.
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m The only parameter required by gMacs itself is 'n_cp' . It sets the length of the
simulation by specifying how many checkpoints are sampled.

m Optional parameters are:

— ‘'data_file' : Output file name of the data capsule. Defaults to 'results.hdf5' .

— 'file_access_mode' : Determines whether files are overridden ( 'replace' ) or
protected ( 'create' ). The possibilities to append data (via the modes 'append'

or 'observables' ) are discussed in the documentation.

— ‘'seed' : Sets the random number seed. It is highly recommended to set a value for
debugging purposes.

m The parameter 'observables' determines which observables are computed at the check-
points. Names specified must be present in the dictionary 'available operators'
otherwise a KeyError will be thrown. Note, that we could have specified many more
available observables - only the ones specified here will actually be computed in this run.

Now that was it - the simulation executed and everything is neatly stored in a data capsule at
the specified file. Note that nothing seems to have happened - glMacs does not print things by
default (although this could be implemented, if desired).

Post processing: retrieving the data The simulation is done and our data is stored safely.
To access the data we simply import DataCapsuleReader and create an object with the
corresponding file name. The object then holds all simulation data.

In the example below, we access the full series of samples by calling get_series() . This
returns a pandas.DataFrame from which we can easily obtain average and standard deviation

of the observable 'phi_square' .

from gmacs import DataCapsuleReader
import numpy as np

# Produce the object and read its contents.
dcr = DataCapsuleReader('scalar_langevin.hdf5')
df = dcr.get_series()

# Check the average value.

avg = np.mean(df [ 'phi_square'])

sig = np.std(df['phi_square']|) / np.sqrt(len(df['phi_square']))

print ('Average square of the field: {:.6f} +- {:.6f}'.format(avg, sig)

This is by far not all that can be done with the DataCapsuleReader . For instance, we may be
interested in the history of the data. We may simply run the following script to obtain a dump
of everything that has ever been written to the present data capsule.

log = dcr.get_file_history()
for line in log:
print(line)

This concludes this brief glimpse in the functionality of gMacs . The documentation comes with
an extensive overview an further features and has more examples and use cases.
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F.3 Outlook: the future of gMacs

Currently gMacs_v0.1.0 is available, which essentially includes the basic usage as shown above
and a bunch of additional features. The package is, however, still under construction. Plans for
new features include:

— Extended capabilities for statistical evaluation (Jackknife, Bootstrap, Binning).
— Oanline binning (see, e.g., [323]).

— Concurrent execution of file I/O operations.

Generalized sample structure.

— Hot start from a provided sample.

— Utilities for the batching of multiple jobs on clusters.

— An assortment of various implemented algorithms (CL, HMC, etc.).

Eventually gMacs will be released as open source package. Stay tuned.
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