29 research outputs found

    Growth, flowering and gas exchange of Rellia brittoniana treated with different concentrations and application frequencies of daminozide

    Get PDF
    Ruellia brittoniana is a fast growth plant with a strong tendency of vegetative growth that occurs at the expense of flowering capability, thus regular pruning for height control is necessary. Chemical pruning using suitable growth retardant may offer similar effects on stem and branch elongation, and flowering of the plants could be promoted. This study was carried out to evaluate the varying rate of daminozide and frequencies of application on the growth and flowering of Ruellia brittoniana.Results of a two factorial experiment involving two application frequencies (double and triple application) and five concentrations of daminozide (0, 500, 1000, 1500, 2000 mg L-1) showed that different concentration of daminozide and application frequencies significantly affected the vegetative growth, photosynthesis, transpiration and chlorophyll content.Daminozide at 500 mg L-1 with triple application caused a reduction of 42% in plant height compared to control with less detrimental effects on flower number. Daminozide application had not affected on the stomatal conductance. Application ofdaminozide at 500 mg L-1 given in triple application was found to be effective in producing short, compact plants with more flowers

    Development of high yield and tomato yellow leaf curl virus TYLCV resistance using conventional and molecular approaches: a review

    Get PDF
    Tomato (Solanum lycopersicum L.) belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally. Since the ancient time of its domestication, thousands of cultivated tomato varieties have been developed targeting an array of aspects. Among which breeding for yield and yield-related traits are mostly focused. Cultivated tomato is extremely genetically poor and hence it is a victim for several biotic and abiotic stresses. Among the biotic stresses, the impact of viral diseases is critical all over tomato cultivating areas. Improvement of tomato still largely rely on conventional methods worldwide while molecular approaches, particularly Marker Assisted Selection (MAS) has become popular across the globe as a fast, low cost and precise tool which is essential in present day plant breeding. In this review paper, breeding tomato for high yield and viral disease resistance, particularly to tomato yellow leaf curl virus disease (TYLCVD) using conventional and molecular approaches will be discussed. Lining up of this set of information will be useful to those who are interested in tomato variety development with high yielding and TYLCVD resistance

    Genetic variability, heritability, and clustering pattern exploration of Bambara groundnut (Vigna subterranea L. Verdc) accessions for the perfection of yield and yield related traits

    Get PDF
    Bambara groundnut (Vigna subterranea L. Verdc.) is considered an emerging crop for the future and known as a crop for the new millennium. The core intention of this research work was to estimate the variation of landraces of Bambara groundnut considering their 14 qualitative and 27 numerical traits, to discover the best genotype fitted in Malaysia. The findings of the ANOVA observed a highly significant variation () for all the traits evaluated. There was a substantial variation (7.27 to 41.21%) coefficient value, and 14 out of the 27 numerical traits noted . Yield (kg/ha) disclosed positively strong to perfect high significant correlation ( to 1.00; ) with traits like fresh pod weight, dry pod weight, and dry seed weight. The topmost PCV and GCV values were estimated for biomass dry (41.09%) and fresh (40.53%) weight with high heritability (Hb) and genetic advance (GA) %, % and %, %, respectively. The topmost heritability was recorded for fresh pod weight (99.89%) followed by yield (99.75%) with genetic advance 67.95% and 62.03%, respectively. The traits with and suggested the least influenced by the environment as well as governed by the additive genes and direct selection for improvement of such traits can be beneficial. To estimate the genetic variability among accessions, the valuation of variance components, coefficients of variation, heritability, and genetic advance were calculated. To authenticate the genetic inequality, an unweighted pair group produced with arithmetic mean (UPGMA) and principal component analysis was executed based on their measurable traits that could be a steadfast method for judging the degree of diversity. Based on the UPGMA cluster analysis, constructed five distinct clusters and 44 accessions from clusters II and IV consider an elite type of genotypes that produce more than one ton yield per hectare land with desirable traits. This study exposed an extensive disparity among the landraces and the evidence on genetic relatives will be imperative in using the existing germplasm for Bambara groundnut varietal improvement. Moreover, this finding will be beneficial for breeders to choose the desirable numerical traits of V. subterranea in their future breeding program

    DNA fingerprinting, fixation-index (Fst), and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system

    Get PDF
    As a new crop in Malaysia, forty-four Bambara groundnut (Vigna subterranea L. verdc.) genotypes were sampled from eleven distinct populations of different origins to explore the genetic structure, genetic inconsistency, and fixation index. The Bambara groundnut, an African underutilized legume, has the capacity to boost food and nutrition security while simultaneously addressing environmental sustainability, food availability, and economic inequalities. A set of 32 ISSRs were screened out of 96 primers based on very sharp, clear, and reproducible bands which detected a total of 510 loci with an average of 97.64% polymorphism. The average calculated value of PIC = 0.243, RP = 5.30, H = 0.285, and MI = 0.675 representing the efficiency of primer set for genetic differentiation among the genotypes. The ISSR primers revealed the number of alleles (Na = 1.97), the effective number of alleles (Ne = 1.38), Nei's genetic diversity (h = 0.248), and a moderate level of gene flow (Nm = 2.26) across the genotypes studied. The estimated Shannon’s information index (I = 0.395) indicates a high level of genetic variation exists among the accessions. Based on Nei’s genetic dissimilarity a UPMGA phylogenetic tree was constructed and grouped the entire genotypes into 3 major clusters and 6 subclusters. PCA analysis revealed that first principal component extracted maximum variation (PC1 = 13.92%) than second principal component (PC2 = 12.59%). Bayesian model-based STRUCTURE analysis assembled the genotypes into 3 (best ΔK = 3) genetic groups. The fixation-index (Fst) analysis narrated a very great genetic diversity (Fst = 0.19 to 0.40) exists within the accessions of these 3 clusters. This investigation specifies the effectiveness of the ISSR primers system for the molecular portrayal of V. subterranea genotypes that could be used for genetic diversity valuation, detection, and tagging of potential genotypes with quick, precise, and authentic measures for this crop improvement through effective breeding schemes

    Development of anthracnose disease resistance and heat tolerance chili through conventional breeding and molecular approaches: a review

    Get PDF
    Chili (Capsicum annuum L.) is the popular spicy vegetable crops belonging to family Solanaceae. Chili peppers are known for their pungency characteristic due to the presence of capsaicinoids that classifies them into hot or sweet pepper. Chili is used as spices, folk remedies for diseases, vegetables, and coloring agent showing a diverse role in human’s life. However, its production is hampered by different biotic stress and abiotic factors. Similarly, the unavailability of high yielding varieties, high temperature, and disease incidence, particularly, anthracnose disease, are the major constraints responsible for the low production of chili pepper. The advents of molecular markers, advancement in quantitative trait loci by classical genetic analysis, and conventional breeding have shown the number of genes for many important and major traits. While the newly developed genotyping technologies and next generation sequencing have led to the discovery of molecular basis for economic important characters in the chili genome and generate large scale data for genomic resources. Based on this background, this review summarizes progress in the development of anthracnose disease-resistant and heat-tolerant chili genotypes through conventional breeding and molecular approaches. This review would help plant breeders in understanding the phenotypic and genetic make-up of capsicum genotypes and provides opportunities for pyramiding two respected genes with the help of diversified phenotypic and molecular marker evaluation

    Effect of organic and inorganic fertilizer on the growth and yield components of traditional and improved rice (Oryza sativa L.) genotypes in Malaysia

    Get PDF
    Rice is the most important staple cereal human nutrition and consumed by 75% of the global population. Rice plants need a supply of essential nutrients for their optimal growth. Rice production has increased tremendously in Malaysia insensitive irrigation and the use of inorganic fertilizers and pesticides. However, the effect of using inorganic fertilizers resulted in contamination of ground water and decreased the productivity of soil, which in turn affected the rice production in the long term. The use of organic manure may help to regain the soil health, but that is insufficient for providing the essential nutrients to achieve optimal growth. Therefore, the use of organic manure combined with inorganic fertilizers is applied to obtain optimum yields. This study aims to test the effect of organic and inorganic fertilizers on the growth and yield components of 65 rice genotypes. The pot experiment was conducted at the net house on field 10, University Putra Malaysia, UPM, Malaysia, during the period of February to June 2019 and August to December 2019 in a randomized complete block design (RCBD) with three replications. There were three treatment combinations viz. T1: 5 t ha−1 chicken manure (CM), T2: 2.5 t ha−1 CM + 50% CFRR, T3: 100% (150 N: 60 P2O5: 60 K2O kg ha−1) and chemical fertilizer recommended rate (CFRR). Grain and straw samples were collected for chemical analysis, and physical parameters were measured at the harvest stage. Results showed that most of the growth and yield components were significantly influenced due to the application of organic manure with chemical fertilizer. The application of chemical fertilizer alone or in combination with organic manure resulted in a significant increase in growth, yield component traits, and nutrient content (N, P, and K) of all rice genotypes. Treatment of 2.5 t ha−1 CM + 50% CFRR as well as 100% CFRR showed a better performance than the other treatments. It was observed that the yield of rice genotypes can be increased substantially with the judicious application of organic manure with chemical fertilizer. The benefits of the mixed fertilization (organic + inorganic) were not only the crop yields but also the promotion of soil health, the reduction of chemical fertilizer input, etc

    A review on gene pyramiding of agronomic, biotic and abiotic traits in rice variety development

    Get PDF
    Rice Oryza sativa L is a staple food crop, and its seeds are the most important component part of the agronomic trait of the cereal crop, rich in nutrient and of economic value to human and even livestock. But, it is often threatened by various abiotic and biotic conditions that reduce the yield, because of high incidences of infectious disease agents and non-pathogenic conditions respectively. Pyramiding of the requisite resistance and tolerance genes into single elite high yielding variety of rice, confers wider spectrum of stress management, resulting to development of single multiline variety of rice. Marker-assisted selection utilizes DNA marker-linked primers for blast resistant gene (RM8225;Piz, RM6836;Piz, Pi2,Pi9), bacteria leaf blight (RM224; Xa-4, RM122;xa-5, RG136; xa-13, RM21;Xa-21) and drought tolerance (RM236;qDTY2.2, RM520;qDTY3.1, RM511;qDTY12.1) in pedigree, backcross and recurrent selection breeding methods. The objectives are to create awareness on the environmental safety of host-resistance, significance of single multiline resistance variety, effect of the interaction of stress conditions and associated simple sequence repeat (SSR) linked markers

    Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach

    Get PDF
    Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties

    Geotagged application for durian trees using aerial imagery and vegetation indices algorithm

    Get PDF
    Durian demand has increased considerably, and it has gained popularity in the market. Under Industrial Revolution 4.0, precision agriculture is expanding globally with a wide range of digital technologies that provide the farming industry with information to improve farm productivity. The objectives of this study are to geotag the durian trees and to compare several Vegetation Indices (VIs) algorithms (VisibleBand Difference Vegetation Index (VDVI), Visible Atmospherically Resistant Index (VARI), Normalized Green-Red Difference Index (NGRDI), Red-Green Ratio Index (RGRI), Modified Green-Red Vegetation Index (MGRVI), Excess Green Index (ExG), Color Index of Vegetation (CIVE), and Vegetativen (VEG)). One hundred sixty durian trees at the Durian Valley in Kluang (Johor), were tagged, which consist of four sample trees for each treatment. Every two weeks of ground data such as the height of trees, canopy width, girth’s diameter, node distance, pH value, moisture content, electrical conductivity (EC) reading, and leaf sizes were exported into the QGIS software and joined with the tagged durian trees. The aerial imagery data captured the durian plantation area using Red Green Blue (RGB) sensor with a 100 m flight attitude. pH, EC, and moisture content were interpolated using Inverse Distance Weighted (IDW) technique. The processed image by VIs and geotagged trees could help farmers to identify the problem areas in the farm and monitor durian plantation effectively
    corecore