260 research outputs found

    A qPCR assay for Bordetella pertussis cells that enumerates both live and dead bacteria

    Get PDF
    Bordetella pertussis is the causative agent of whooping cough, commonly referred to as pertussis. Although the incidence of pertussis was reduced through vaccination, during the last thirty years it has returned to high levels in a number of countries. This resurgence has been linked to the switch from the use of whole-cell to acellular vaccines. Protection afforded by acellular vaccines appears to be short-lived compared to that afforded by whole cell vaccines. In order to inform future vaccine improvement by identifying immune correlates of protection, a human challenge model of B. pertussis colonisation has been developed. Accurate measurement of colonisation status in this model has required development of a qPCR-based assay to enumerate B. pertussis in samples that distinguishes between viable and dead bacteria. Here we report the development of this assay and its performance in the quantification of B. pertussis from human challenge model samples. This assay has future utility in diagnostic labs and in research where a quantitative measure of both B. pertussis number and viability is required

    Fragmentation Characteristics of Collision-Induced Dissociation in MALDI TOF/TOF Mass Spectrometry

    Get PDF
    The identification of proteins by tandem mass spectrometry relies on knowledge of the products produced by collision-induced dissociation of peptide ions. Most previous work has focused on fragmentation statistics for ion trap systems. We analyzed fragmentation in MALDI TOF/TOF mass spectrometry, collecting statistics using a curated set of 2459 MS/MS spectra, and applying bootstrap resampling to assess confidence intervals. We calculated the frequency of 18 product ion types, the correlation between both mass and intensity with ion type, the dependence of amide bond breakage on the residues surrounding the cleavage site, and the dependence of product ion detection on residues not adjacent to the cleavage site. The most frequently observed were internal ions, followed by y ions. A strong correlation between ion type and the mass and intensity of its peak was observed, with b and y ions producing the most intense and highest-mass peaks. The amino acids P, W, D and R had a strong effect on amide bond cleavage when situated next to the breakage site, whereas residues including I, K and H had a strong effect on product ion observation when located in the peptide but not adjacent to the cleavage site, a novel observation

    Improving the efficacy of selenium fertilizers for wheat biofortification

    Get PDF
    © 2019, The Author(s). Increasing the selenium (Se) concentration of staple crops by fertilization is a valuable pathway to increase Se in the human diet, thus preventing Se deficiency. A pot trial was set up to investigate whether the application of 3.33 µg kg−1 of Se (equivalent to 10 g ha−1) to wheat can be made more efficient by its co-application with macronutrient carriers, either to the soil or to the leaves. In the soil, Se was applied either on its own (selenate only) or as a granular, Se-enriched macronutrient fertilizer supplying nitrogen, phosphorus, potassium or sulfur. Selenium was also applied to leaves at head emergence with, or without, 2% w/v N fertilizers. With grain Se concentrations varying from 0.13–0.84 mg kg−1, soil application of selenate-only was 2–15 times more effective than granular Se-enriched macronutrient fertilizers in raising grain Se concentrations. Co-application of foliar Se with an N carrier doubled the Se concentration in wheat grains compared to the application of foliar Se on its own, the majority of which was in the highly bioavailable selenomethionine fraction. Results from this study demonstrate the possibility of improving the efficacy of Se fertilizers, which could enrich crops with Se without additional application costs in the field

    Characterisation of dust emissions from machined engineered stones to understand the hazard for accelerated silicosis

    Get PDF
    Engineered stones are novel construction materials associated with a recent upsurge in silicosis cases among workers in the stonemason industry. In order to understand the hazard for the short latency of lung disease among stonemasons, we simulated real-time dust exposure scenario by dry-machining engineered stones in controlled conditions, capturing and analysing the respirable dust generated for physical and chemical characteristics. Natural granite and marble were included for comparison. Cutting engineered stones generated high concentrations of very fine particles ( 80% respirable crystalline silica content, in the form of quartz and cristobalite. Engineered stones also contained 8–20% resin and 1–8% by weight metal elements. In comparison, natural stones had far lower respirable crystalline silica (4- 30%) and much higher metal content, 29–37%. Natural stone dust emissions also had a smaller surface area than engineered stone, as well as lower surface charge. This study highlighted the physical and chemical variability within engineered stone types as well as between engineered and natural stones. This information will ultimately help understand the unique hazard posed by engineered stone fabrication work and help guide the development of specific engineering control measures targeting lower exposure to respirable crystalline silica.Chandnee Ramkissoon, Sharyn Gaskin, Leigh Thredgold, Tony Hall, Shelley Rowett, Richard Gu

    A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy

    Get PDF
    PURPOSE: Proliferative vitreoretinopathy (PVR) is still the major cause of failure of retinal detachment (RD) surgery and although the risk for developing this complication is associated with some clinical characteristics, the correlation is far from absolute, raising the possibility of genetic susceptibility. The objective of this study was to analyze the genetic contribution to PVR in patients undergoing RD surgery, the Retina 4 Project. METHODS: A candidate gene association study was conducted in 2006 in a Spanish population of 450 patients suffering from primary rhegmatogenous RD. Replication was carried out in a larger population undergoing RD surgery at several European centers among 546 new patients. Single nucleotide polymorphism (SNP) of 30 genes known to be involved with inflammation were analyzed. For replication stage, those genes previously detected as significantly associated with PVR were genotyped. Distribution of allelic and haplotypic frequencies in case and control group were analyzed. Single and haplotypic analysis were assessed. The Rosenberg two-stage method was used to correct for single and multiple analyses. RESULTS: After correction for multiple comparisons, four genes were significantly associated with PVR: SMAD7 (P = 0.004), PIK3CG (P = 0.009), TNF locus (P = 0.0005), and TNFR2 (P = 0.019) In the European sample, replication was observed in SMAD7 (P = 0.047) and the TNF locus (P = 0.044). CONCLUSIONS: These results confirm the genetic contribution to PVR and the implication of SMAD7 and TNF locus in the development of PVR. This finding may have implications for understanding the mechanisms of PVR and could provide a potential new therapeutic target for PVR prophylaxis
    corecore