14 research outputs found

    CD44 is exposed to the extracellular matrix at invasive sites in basal cell carcinomas

    No full text
    We have previously shown, by light microscopy, that the level of expression of CD44 (pan-CD44, CD44v3, CD44v5, and CD44v6) in human basal cell carcinomas is related to growth pattern and invasiveness (Br J Dermatol 1099;140:17-25). We have now studied the fine distribution of these CD44 isoforms in the same tumors using immunoelectron microscopy. Despite the strong differences in the level of expression in tumor areas with different growth patterns, CD44 was consistently found almost exclusively at intercellular surfaces, with a very strong predilection for widened intercellular pouches, le, identical to the distribution in the normal epidermis. This prevalent distribution corroborates a role for CD44 in maintaining hyaluronan-filled spaces (J Histochem Cytochem 1998;46:241-248). However, the correlation between the presence of CD44 and the presence of such pouches was not absolute, indicating that other factors are involved as well. In contrast to the prevailing literature, we also found a weak but distinct labeling of cell surfaces facing the extracellular matrix. Interestingly, this appeared significantly elevated in the thinnest, most irregular, and usually most peripheral tumor cell strands, where it was associated with tumor cell protrusions and absence of a basal lamina. Thus, the CD44(+) protrusions were in direct contact with the extracellular matrix and apparently represented sites of invasion. The mechanisms that may contribute to a role of CD44 at these sites include binding of extracellular matrix components (notably hyaluronan) and several biologically active factors such as hepatocyte growth factor/scatter factor and matrix metal loproteinase

    CD44 is exposed to the extracellular matrix at invasive sites in basal cell carcinomas

    No full text
    We have previously shown, by light microscopy, that the level of expression of CD44 (pan-CD44, CD44v3, CD44v5, and CD44v6) in human basal cell carcinomas is related to growth pattern and invasiveness (Br J Dermatol 1099;140:17-25). We have now studied the fine distribution of these CD44 isoforms in the same tumors using immunoelectron microscopy. Despite the strong differences in the level of expression in tumor areas with different growth patterns, CD44 was consistently found almost exclusively at intercellular surfaces, with a very strong predilection for widened intercellular pouches, le, identical to the distribution in the normal epidermis. This prevalent distribution corroborates a role for CD44 in maintaining hyaluronan-filled spaces (J Histochem Cytochem 1998;46:241-248). However, the correlation between the presence of CD44 and the presence of such pouches was not absolute, indicating that other factors are involved as well. In contrast to the prevailing literature, we also found a weak but distinct labeling of cell surfaces facing the extracellular matrix. Interestingly, this appeared significantly elevated in the thinnest, most irregular, and usually most peripheral tumor cell strands, where it was associated with tumor cell protrusions and absence of a basal lamina. Thus, the CD44(+) protrusions were in direct contact with the extracellular matrix and apparently represented sites of invasion. The mechanisms that may contribute to a role of CD44 at these sites include binding of extracellular matrix components (notably hyaluronan) and several biologically active factors such as hepatocyte growth factor/scatter factor and matrix metal loproteinase

    Increased expression of connective tissue growth factor in amyotrophic lateral sclerosis human spinal cord

    No full text
    Connective tissue growth factor (CTGF) is a secreted protein involved in a variety of cellular events such as survival, proliferation, and extracellular matrix production. Recent studies suggest a role for this protein also in the repair processes of the central nervous system. The distribution and significance of CTGF in human brain is, however, poorly understood, particularly under pathological conditions. In the present study the expression of CTGF protein was investigated in the spinal cord of control and both sporadic and familial amyotrophic lateral sclerosis (sALS and fALS) patients. Western blot analysis showed a consistent increase in CTGF expression in six sALS patients compared with controls. Immunoreactivity signal for CTGF was equally present in blood vessels of control and ALS spinal cord, but was dramatically increased in reactive astrocytes of the ventral horn and white matter in both sALS and fALS. Increased expression was also observed in the cytoplasm of motor neurons of sALS and fALS patients with long duration of the disease. Our data indicate a role for CTGF in the complex reactive process that is associated with the progression of ALS spinal cord damage. The up-regulation in reactive astrocytes supports a role for CTGF in the molecular mechanisms underlying astrogliosis. However, the altered CTGF expression observed in neurons might represent an additional mechanism involved in motor neuron dysfunction and changes in glial-neuronal communication in the course of the neurodegenerative proces

    Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in Taylor-type focal cortical dysplasia

    No full text
    Purpose: Focal cortical dysplasia (FCD) is known to be a major cause of intractable epilepsy. The cellular mechanism(s) underlying the epileptogenicity of FCD remain largely unknown. Because recent studies indicate that metabotropic glutamate receptor subtypes (mGluRs) play a role in epileptogenesis, we investigated the expression and cellular distribution pattern of mGluRs in FCD specimens. Methods: Immunocytochemical expression of group I and group II mGluR subtypes was investigated in 15 specimens of human FCD obtained during epilepsy surgery. Results: Strong mGluRlalpha and mGluR5 (group I mGluRs) immunoreactivity (IR) was observed in the majority of FCD specimens in dysplastic as well as in heterotopic neurons. mGluRla was expressed in a subpopulation of neurons (mainly large dysplastic cells), whereas mGluR5 was represented in a higher percentage of dysplastic neuronal cells. Group II mGluRs (mGluR2/3) IR was observed less frequently than that in group I mGluRs and generally appeared in <10% of the dysplastic neurons. IR for all three mGluR subtypes was observed in balloon cells. mGluR2/3 appeared to be most frequently expressed in glial fibrillary acidic protein (GFAP)-positive balloon cells (glial type), and mGluRlalpha, in microtubule-associated protein (MAP)2-positive cells (neuronal type). mGluR5 was present in the majority of balloon cells. Occasionally glial mGluRlalpha IR was observed in bizarre glial cells with di- or multinuclei. Reactive astrocytes were intensively stained, mainly with mGluR5 and mGluR2/3. Conclusions: The cellular distribution of mGluR subtypes, with high expression of mGluRlalpha and mGluR5 in dysplastic neurons, suggests a possible contribution of group I mGluRs to the intrinsic and high epileptogenicity of dysplastic cortical region

    Expression and distribution of Id helix-loop-helix proteins in human astrocytic tumors

    No full text
    The Id family of helix-loop-helix proteins is involved in a variety of processes, such as development, proliferation, and angiogenesis. In this study, we investigated the expression pattern of Id1, Id2, and Id3 in surgical specimens of human glial tumors. Western blot analysis demonstrated that all three Id proteins were expressed in astrocytic tumors. Expression levels in high-grade tumors were higher than in low-grade tumors. Immunohistochemical analysis confirmed that many of the tumor astrocytes exhibited strong Id1-3 IR. In contrast, in adult human normal brain, Id expression was low both in resting astrocytes and in endothelial cells. In tumor cells, Id proteins displayed cytoplasmic as well as nuclear localization. Id1-3 IR scores in tumor cells were positively correlated with proliferation indices. Moreover, Id1-3 IR was detected in endothelial cells of the astrocytic tumor blood vessels. The vascular Id1-3 expression correlated positively with tumor vascularity and grade. These results support the role of the Id gene family in the enhanced proliferative potential of tumor astrocytes. The evidence also supports the involvement of the Id gene family in tumor angiogenesis, a process that critically influences the malignant behavior of glial tumors

    Rhabdomyolysis in pontocerebellar hypoplasia type 2 (PCH-2)

    No full text
    Pontocerebellar hypoplasia type 2, an autosomal recessive neurodegeneration with prenatal onset, is characterised by progressive microcephaly and chorea/dystonia and has not previously been associated with muscular involvement. The gene associated with PCH-2 is unknown. An episode of rhabdomyolysis is reported in two non-related children with PCH-2, fatal in one, precipitated by intercurrent disease. Muscle biopsies in two other PCH-2 patients, and in one rhabdomyolysis patient whose biopsy antedated this complication showed areas of myofibrillar disruption or necrosis. Postmortem muscle sampled in another case without neuromuscular symptoms revealed focal necrosis, regenerating small fibres and upregulation of HLA-ABC. Random serum creatine kinase values in six other PCH-2 patients without clinical signs of neuromuscular involvement were increased in four. Collected data provide preliminary evidence of a subclinical myopathy associated with PCH-

    The membrane attack complex of the complement system is essential for rapid wallerian degeneration

    No full text
    The complement (C) system plays an important role in myelin breakdown during Wallerian degeneration (WD). The pathway and mechanism involved are, however, not clear. In a crush injury model of the sciatic nerve, we show that C6, necessary for the assembly of the membrane attack complex (MAC), is essential for rapid WD. At 3 d after injury, pronounced WD occurred in wild-type animals, whereas the axons and myelin of C6- deficient animals appeared intact. Macrophage recruitment and activation was inhibited in C6-deficient rats. However, 7 d after injury, the distal part of the C6-deficient nerves appeared degraded. As a consequence of a delayed WD, more myelin breakdown products were present than in wild-type nerves. Reconstitution of the C6-deficient animals with C6 restored the wild-type phenotype. Treatment with rhC1INH (recombinant human complement 1 inhibitor) blocked deposition of activated C-cleaved products after injury. These experiments demonstrate that the classical pathway of the complement system is activated after acute nerve trauma and that the entire complement cascade, including MAC deposition, is essential for rapid WD and efficient clearance of myelin after acute peripheral nerve traum

    Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain

    No full text
    Purpose: Breast cancer resistance protein (BCRP) is a half adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed on cellular membranes and included in the group of multidrug resistant (MDR)-related proteins. Recently, upregulation of different MDR proteins has been shown in human epilepsy-associated conditions. This study investigated the expression and cellular distribution of BCRP in human control and epileptic brain, including a large number of both neoplastic and nonneoplastic specimens from patients with chronic pharmacoresistant epilepsy. Methods: Several epileptogenic pathologies, such as hippocampal sclerosis (HS), focal cortical dysplasia (FCD), dysembryoplastic neuroepithelial tumor, oligodendroglioma astrocytoma, and glioblastoma multiforme were studied by using Western blot and immunocytochemistry. Results: With Western blot, we could demonstrate the presence of BCRP in both normal and epileptic human brain tissue. In contrast to P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) 2, BCRP expression levels did not change in tissue from patients with HS, compared with control hippocampus. No BCRP immunoreactivity was observed in glial or neuronal cells, including reactive astrocytes and dysplastic neurons in FCD. BCRP expression was, however, increased in tumor brain tissue. Immunocytochemistry demonstrated that BCRP was exclusively located in blood vessels and was highly expressed at the luminal cell surface and in newly formed tumor capillaries. This localization closely resembles that of P-gp. The higher expression observed in astrocytomas by Western blot analysis was related to the higher vascular density within the tumor tissue. Conclusions: These results indicate a constitutive expression of BCRP in human endothelial cells, representing an important barrier against drug access to the brain. In particular, the strong BCRP expression in the microvasculature of epileptogenic brain tumors could critically influence the bioavailability of drugs within the tumor and contribute to pharmacoresistanc

    Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy

    No full text
    Purpose: This study investigated the cellular distribution of different multidrug resistance (MDR)-related proteins such as P-glycoprotein (P-gp), the multidrug resistance-associated proteins (MRP) 1 and 2, and the major vault protein (MVP) in normal and sclerotic hippocampus of patients with medically refractory mesial temporal lobe epilepsy (MTLE). Methods: Single- and double-label immunocytochemistry was used on brain sections of control hippocampus and of hippocampus of refractory MTLE patients. Results: In TLE cases with hippocampal sclerosis (HS), all four MDR proteins examined that had low or no expression in control tissue were upregulated, albeit with different cellular distribution patterns. P-gp immunoreactivity (IR) was observed in astrocytes in regions with diffuse reactive gliosis. In 75% of HS cases, strong P-gp IR was detected in blood vessels, with prominent endothelial labeling. Reactive astrocytes displayed low MRP1 IR. However, glial MRP1 expression was noted in glial endfoot processes around blood vessels. Neuronal MRP1 expression was observed in hypertrophic hilar neurons and in a few residual neurons of the CA1 region. Hippocampal MRP2 expression was observed in the large majority of HS cases in blood vessels. Hypertrophic hilar neurons and blood vessels within the sclerotic hippocampus expressed major vault protein (MVP). Conclusions: These findings indicate that MDR proteins are upregulated in concert in the hippocampus of patients with refractory MTLE, supporting their role in the mechanisms underlying drug resistance. The specific cell-distribution patterns within the sclerotic hippocampus suggest different cellular functions, not necessarily linked only to clinical drug resistance
    corecore