18,716 research outputs found

    Optimization of duty cycles for LED based indoor positioning system

    Get PDF

    La herida semejante

    Get PDF

    The properties of ten O-type stars in the low-metallicity galaxies IC 1613, WLM and NGC 3109

    Get PDF
    Massive stars likely played an important role in the reionization of the Universe, and the formation of the first black holes. Massive stars in low-metallicity environments in the local Universe are reminiscent of their high redshift counterparts. In a previous paper, we reported on indications that the stellar winds of low-metallicity O stars may be stronger than predicted, which would challenge the current paradigm of massive star evolution. In this paper, we aim to extend our initial sample of six O stars in low-metallicity environments by four. We aim to derive their stellar and wind parameters, and compare these to radiation-driven wind theory and stellar evolution models. We have obtained intermediate-resolution VLT/X-Shooter spectra of our sample of stars. We derive the stellar parameters by fitting synthetic fastwind line profiles to the VLT/X-Shooter spectra using a genetic fitting algoritm. We compare our parameters to evolutionary tracks and obtain evolutionary masses and ages. We also investigate the effective temperature versus spectral type calibration for SMC and lower metallicities. Finally, we reassess the wind momentum versus luminosity diagram. The derived parameters of our target stars indicate stellar masses that reach values of up to 50 MM_{\odot}. The wind strengths of our stars are, on average, stronger than predicted from radiation-driven wind theory and reminiscent of stars with an LMC metallicity. We discuss indications that the iron content of the host galaxies is higher than originally thought and is instead SMC-like. We find that the discrepancy with theory is lessened, but remains significant for this higher metallicity. This may imply that our current understanding of the wind properties of massive stars, both in the local universe as well as at cosmic distances, remains incomplete.Comment: Accepted for publication in Astronomy and Astrophysics. 10 pages, 8 figure

    Completely dark galaxies: their existence, properties, and strategies for finding them

    Get PDF
    There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter halos do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk and White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km/s, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy halos has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.Comment: 12 pages, 4 figures, MNRAS in pres
    corecore