28 research outputs found

    Imprinting of the MEDEA

    Full text link

    Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Get PDF
    Dongfang Wang, Changqing Zhang, David J. Hearn, Il-HO Kang, megan I. Skaggs, Karen S. Schumaker, and Ramin Yadegari are with the School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA -- Il-Ho Kang, Jayson A. Punwani, and Gary N. Drews are with the Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA -- Changqing Zhang is with The Section of Molecular, Cell and Developmental Biology, University of Texas at Austin, Austin, Texas 78712-0159, USA -- David J. Hearn is with the Department of Biological Sciences, Towson University, Towson, Maryland 21252-0001, USA -- Il-Ho Kang is with the Department of Horticulture, Iowa State University, Ames, Iowa 50011-1100, USA --Jayson A. Punwani is with the Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USABackground In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this study have not been reported previously as being expressed in the female gametophyte. Therefore, they might represent novel regulators and provide entry points for reverse genetic and molecular approaches to uncover the gene regulatory networks underlying female gametophyte development.Cellular and Molecular [email protected]

    Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions

    Full text link
    The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development.Preview published March 15, 2016. 12 month embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p

    The role of JAGGED in shaping lateral organs

    No full text
    Position-dependent regulation of growth is important for shaping organs in multicellular organisms. We have characterized the role of JAGGED, a gene that encodes a protein with a single C(2)H(2) zinc-finger domain, in controlling the morphogenesis of lateral organs in Arabidopsis thaliana. Loss of JAGGED function causes organs to have serrated margins. In leaves, the blade region is most severely affected. In sepals, petals and stamens, the strongest defects are seen in the distal regions. By monitoring cell-cycle activity in developing petals with the expression of HISTONE 4, we show that JAGGED suppresses the premature differentiation of tissues, which is necessary for the formation of the distal region. The localization of defects overlaps with the expression domain of JAGGED, which is restricted to the growing regions of lateral organs. JAGGED expression is notably absent from the cryptic bract, the remnant of a leaf-like organ that subtends the flower in many species but does not normally develop in wild-type Arabidopsis. If misexpressed, JAGGED can induce the formation of bracts, suggesting that the exclusion of JAGGED from the cryptic bract is a cause of bractless flowers in Arabidopsis

    Plant SMU-1 and SMU-2 Homologues Regulate Pre-mRNA Splicing and Multiple Aspects of Development1[C][W][OA]

    No full text
    In eukaryotes, alternative splicing of pre-mRNAs contributes significantly to the proper expression of the genome. However, the functions of many auxiliary spliceosomal proteins are still unknown. Here, we functionally characterized plant homologues of nematode suppressors of mec-8 and unc-52 (smu). We compared transcript profiles of maize (Zea mays) smu2 endosperm with those of wild-type plants and identified pre-mRNA splicing events that depend on the maize SMU2 protein. Consistent with a conserved role of plant SMU-2 homologues, Arabidopsis (Arabidopsis thaliana) smu2 mutants also show altered splicing of similar target pre-mRNAs. The Atsmu2 mutants occasionally show developmental phenotypes, including abnormal cotyledon numbers and higher seed weights. We identified AtSMU1 as one of the SMU2-interacting proteins, and Atsmu1 mutations cause similar developmental phenotypes with higher penetrance than Atsmu2. The AtSMU2 and AtSMU1 proteins are localized to the nucleus and highly prevalent in actively dividing tissues. Taken together, our data indicated that the plant SMU-1 and SMU-2 homologues appear to be involved in splicing of specific pre-mRNAs that affect multiple aspects of development

    Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions.

    No full text
    The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development.Preview published March 15, 2016. 12 month embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore