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Editorial on the Research Topic

Advances in crop biomass production based on multi-omics approach
Introduction

While as the dominant source of energy during the past century, the detrimental

impacts of fossil fuels have become apparent in environmental pollution, unsustainability,

and global warming (Sharif et al., 2021). With increasing efforts and capitalization on

renewable energy technologies, bioenergy has become one important type of renewable

energy. Biomass of plants is an important feedstock of bioenergy production. Plants

suitable for biomass production share common characteristics: high yield (of dry matter or

a type of biomass, i.e., starch or sugar), low agronomic inputs, and low nutrition

requirements. Based on these features, woody species (e.g., willow and poplar), grasses

(e.g., sugarcane, switchgrass, and Miscanthus), aquatic plants (e.g., algae and duckweed),

and oil plants have been considered biomass plants. Additionally, wheat and rice straw are

important biomass sources. Biomass has several types according to the source species, the

moisture content, and composition of biomass material, such as lignocellulosic biomass

from woody plants, biomass from grasses (including cellulosic biomass from grasses or

extracted starch/sugar), aquatic plant biomass, and manures (McKendry, 2002). In turn,

these biomass types are compatible with different bio-conversion methods, e.g.,

combustion, fermentation, gasification, pyrolysis, and mechanical extraction of starch or

oils. Recently, numerous efforts have been made to convert biomass to high-value

chemicals and bio-based materials (Anchan and Dutta, 2021).

Downstream utilizations of biomass (e.g., conversion to biofuels or bio-based chemicals)

requires multiple disciplines, such as agricultural science, microbiology, and chemistry. By
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contrast, upstream knowledge of biomass, such as the genetic

determinants of biomass-related traits and molecular mechanisms

of biomass accumulation and composition, relies on plant biology,

and agricultural science. Notably, many biomass plants with large

and complex genomes (such as sugarcane) have been less studied or

have bottlenecks in transformation and traditional genetics (Zhang

et al., 2018; Wang et al., 2021; An et al., 2021; Chen et al., 2022).

Recently, research on biomass and bioenergy plants has been

advanced rapidly due to the development of genomics. For

example, state-of-the-art genomic technologies facilitated the

successful assembly of reference genomes for sugarcane,

Miscanthus, and switchgrass (Zhang et al., 2018; Mitros et al., 2020;

Lovell et al., 2021). Though huge diversity within and among biomass

crops provides invaluable resources for biomass utilization,

understanding of biomass production mechanisms is still limited

due to shortage of molecular and omic resources and challenges of

functional studies. It has become apparent that synergistic integration

of multiple omic technologies (e.g., transcriptomics, proteomics,

epigenomics, metabolomics, and phenomics) serves as a key

approach to circumvent the challenges. This Research Topic

includes seven research articles and two reviews, covering several

biomass species, including maize, sorghum, sugarcane, rice, and oil

plants to reveal the current advances of multi-omics in addressing the

mechanisms of biomass production.
Advances in multi-omic technologies
and resources facilitate studies on
biomass-related traits

This section showcases how omic technologies and resources can

facilitate biomass studies. Voelker et al. reported the genome

assemblies of 10 sorghum accessions including sweet and non-

sweet sorghum genotypes (Boatwright et al.; Kumar et al., 2022). A

large number of structural variations (SVs) were identified, which

highlighted the SV-related functional difference between sweet and

non-sweet sorghum genotypes. Wang et al. developed an image-

based phenotypic acquisition method to characterize leaf-sheath

traits in detail and applied the method to genome-wide association

studies (GWAS), providing a detailed genetic architecture of leaf-

sheath morphology. Guo et al. presented an integrative genomic

database for oil plants, the Genomic Information Repository for Oil

Plants (GROP, www.grop.site), which hosts 22 reference genomes of

18 species with 46 transcriptome datasets (Bayer et al., 2017; Unver

et al., 2017; Wang et al., 2018; Song et al., 2020; Sturtevant et al., 2020;

Chen et al., 2021). The construction of such an omics repository

addresses the need to integrate, share, and analyze the omics data

across oil plants for the research community. In addition, Tu et al.

reviewed the major applications of regular short-read RNA-seq in

plant biology, described a cohort of representative RNA-seq-analysis

tools in model plants and major crops, and emphasized that the full

utilization of fruitful RNA-seq resources will promote the omic

research on under studied species (including biomass crops) to a

high level.
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Applications of omic
approaches provide insights into
biomass-related biology

This section collects representative papers using omic

technologies to gain insights into biomass-related biological

questions. Sugarcane is one of the key biomass and bioenergy

crops, providing about 80% of global sugar production and 40%

of ethanol production (Zhang et al., 2018). Efforts have been made

to investigate the molecular mechanisms of sugar accumulation in

sugarcane and in the comparable species sweet sorghum (Li et al.,

2018; Li et al., 2019a; Li et al., 2019b), from sugar transportation and

physiology to transcriptome and quantitative trait loci mapping

(Babu et al., 2009; Liu et al.; Moore, 2005; Aitken et al., 2006; Casu

et al., 2007; Zhang et al., 2021). Yuan et al. performed

transcriptomic and metabolomic studies on two sugarcane

varieties and revealed candidate genes for sucrose metabolism,

stem texture, and rind color. While the genes associated with

stem sugar accumulation have been identified in sugarcane (Casu

et al., 2007; Zhang et al., 2021), epigenetic regulation remains

elusive. Xue et al. profiled the DNA methylation in sugarcane

(Saccharum officinarum) leaves, roots, rinds, and piths, and

observed DNA methylation valleys (DMVs) overlapped with

transcription factors and sucrose-related genes, indicating the

involvement of epigenetic regulation in sucrose metabolism. Liu

et al. revealed the link of OsPRR37, a key component of the rice

circadian clock, with biomass production through DNA

methylation analysis. Overexpression of OsPRR37 in rice led to

suppressed growth and lowered biomass likely through the diurnal

changes of DNA methylation regulators (such as ROS1A/DNG702)

to hypo-methylate a key signal component controlling metabolism,

OsHXK1 (Zheng et al., 2021; Zhou et al., 2021). Ain et al. presented

a comprehensive review on recent progress in the identification of

molecular and genetic factors regulating growth, biomass

accumulation, and assimilate partitioning in bioenergy crops. The

review highlights a plethora of genes related to cell cycle, cell wall,

hormones, and related transcription factors as the targets to

improve photosynthesis, carbohydrate allocation, and biomass

production in the bioenergy crops. Additionally, this topic also

hosts an example of omics-enabled trait association study.

Specifically, Wang et al. used comparative RNA-seq to profile

seed-specific long-lived mRNA and identify a number of the

long-lived mRNA associated with rice seed longevity.
Concluding remarks

This Research Topic exemplifies that multi-omics represent an

important route to strengthen the studies of biomass crops,

particularly with complex genomes. Importantly, trends emerged

from these articles that a combination of multiple omic resources

and tools is a powerful approach to gaining new insights into

biomass production and related traits. The discoveries will pave the

road toward molecular design and breeding biomass crops with

tailored bioenergy purposes.
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