20 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Transferability of real-world data across borders for regulatory and health technology assessment decision-making

    No full text
    Recently, there has been increased consideration of real-world data (RWD) and real-world evidence (RWE) in regulatory and health technology assessment (HTA) decision-making. Due to challenges in identifying high-quality and relevant RWD sources, researchers and regulatory/HTA bodies may turn to RWD generated in locales outside of the locale of interest (referred to as "transferring RWD"). We therefore performed a review of stakeholder guidance as well as selected case studies to identify themes for researchers to consider when transferring RWD from one jurisdiction to another. Our review highlighted that there is limited consensus on defining decision-grade, transferred RWD; certain stakeholders have issued relevant guidance, but the recommendations are high-level and additional effort is needed to generate comprehensive guidance. Additionally, the case studies revealed that RWD transferability has not been a consistent concern for regulatory/HTA bodies and that more focus has been put on the evaluation of internal validity. To help develop transferability best practices (alongside internal validity best practices), we suggest that researchers address the following considerations in their justification for transferring RWD: treatment pathways, nature of the healthcare system, incidence/prevalence of indication, and patient demographics. We also recommend that RWD transferability should garner more attention as the use of imported RWD could open doors to high-quality data sources and potentially reduce methodological issues that often arise in the use of local RWD; we thus hope this review provides a foundation for further dialogue around the suitability and utility of transferred RWD in the regulatory/HTA decision-making space

    Comparison of predicted susceptibility between genotype and virtual phenotype HIV drug resistance interpretation systems among treatment-naive HIV-infected patients in Asia: TASER-M cohort analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate interpretation of HIV drug resistance (HIVDR) testing is challenging, yet important for patient care. We compared genotyping interpretation, based on the Stanford University HIV Drug Resistance Database (Stanford HIVdb), and virtual phenotyping, based on the Janssen Diagnostics BVBA’s vircoTYPE™ HIV-1, and investigated their level of agreement in antiretroviral (ARV) naive patients in Asia, where non-B subtypes predominate.</p> <p>Methods</p> <p>Sequences from 1301 ARV-naive patients enrolled in the TREAT Asia Studies to Evaluate Resistance – Monitoring Study (TASER-M) were analysed by both interpreting systems. Interpretations from both Stanford HIVdb and vircoTYPE™ HIV-1 were initially grouped into 2 levels: susceptible and non-susceptible. Discrepancy was defined as a discordant result between the susceptible and non-susceptible interpretations from the two systems for the same ARV. Further analysis was performed when interpretations from both systems were categorised into 3 levels: susceptible, intermediate and resistant; whereby discrepancies could be categorised as major discrepancies and minor discrepancies. Major discrepancy was defined as having a susceptible result from one system and resistant from the other. Minor discrepancy corresponded to having an intermediate interpretation in one system, with a susceptible or resistant result in the other. The level of agreement was analysed using the prevalence adjusted bias adjusted kappa (PABAK).</p> <p>Results</p> <p>Overall, the agreement was high, with each ARV being in “almost perfect agreement”, using Landis and Koch’s categorisation. Highest discordance was observed for efavirenz (75/1301, 5.8%), all arising from susceptible Stanford HIVdb versus non-susceptible vircoTYPE™ HIV-1 predictions. Protease Inhibitors had highest level of concordance with PABAKs all above 0.99, followed by Nucleoside Reverse Transcriptase Inhibitors with PABAKs above 0.97 and non-NRTIs with the lowest PABAK of 0.88. The 68/75 patients with discordant efavirenz results harboured the V179D/E mutations compared to 7/1226 with no efavirenz discrepancy (p-value <0.001). In the 3-level comparison, all but one of the discrepancies was minor.</p> <p>Conclusions</p> <p>The two systems agreed well with lowest concordance observed for efavirenz. When interpreting HIVDR, especially in non-B subtypes, clinical correlation is crucial, in particular when efavirenz resistance is interpreted based on V179D/E.</p
    corecore