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Abstract

Background: Voxel-based morphometry (VBM) using structural brain MRI has been widely used for the assessment
of impairment in Alzheimer’s disease (AD), but previous studies in VBM studies on AD remain inconsistent.

Objective: We conducted meta-analyses to integrate the reported studies to determine the consistent grey matter
alterations in AD based on VBM method.

Methods: The PubMed, ISI Web of Science, EMBASE and Medline database were searched for articles between
1995 and June 2014. Manual searches were also conducted, and authors of studies were contacted for additional
data. Coordinates were extracted from clusters with significant grey matter difference between AD patients and
healthy controls (HC). Meta-analysis was performed using a new improved voxel-based meta-analytic method, Effect
Size Signed Differential Mapping (ES-SDM).

Results: Thirty data-sets comprising 960 subjects with AD and 1195 HC met inclusion criteria. Grey matter volume
(GMV) reduction at 334 coordinates in AD and no GMV increase were found in the current meta-analysis. Significant
reductions in GMV were robustly localized in the limbic regions (left parahippocampl gyrus and left posterior
cingulate gyrus). In addition, there were GM decreases in right fusiform gyrus and right superior frontal gyrus. The
findings remain largely unchanged in the jackknife sensitivity analyses.

Conclusions: Our meta-analysis clearly identified GMV atrophy in AD. These findings confirm that the most prominent
and replicable structural abnormalities in AD are in the limbic regions and contributes to the understanding of
pathophysiology underlying AD.

Keywords: Voxel-based morphometry (VBM), Alzheimer’s disease (AD), Grey matter (GM), Meta-analysis, Magnetic
resonance imaging (MRI), Effect size signed differential mapping (ES-SDM)
Introduction
Morphometric MRI studies have investigated focal
structural abnormalities in brain tissue types, such as
grey matter (GM) and white matter (WM), between
groups of individuals using voxel-based morphometry
(VBM). Briefly, the VBM approach presents lots of
advantages such as fully automated, hypothesis-free,
time-efficient, operator-independent and capable of
investigating grey matter abnormalities across the
whole brain than region of interest (ROI) analysis [1].
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However, the major limitation of ROI-based tech-
niques of morphometric brain changes is that this
method requires a priori decision concerning which
structures need to be evaluated [2]. Due to the small
and heterogeneous samples of participants as well as
substantial methodological differences between stud-
ies, results from VBM studies remain inconsistent and
controversial [3]. As an intrinsical whole-brain tech-
nique, the VBM method exhibits comparable accuracy
to manual volumetry and overcomes the limitations of
ROI approach; therefore identifying consistent results
from VBM studies of grey matter volume (GMV) in
Alzheimer’s disease (AD) patients through meta-analysis
is of particular significance.
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://core.ac.uk/display/193656863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yu-jintai@163.com
mailto:dr.tanlan@163.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Wang et al. Translational Neurodegeneration  (2015) 4:6 Page 2 of 9
AD is the most common type of dementia, the pro-
gressive neurodegenerative disorder, characterized by
extensive neuronal and synaptic losses, as well as the
presence of extracellular amyloid plaques, intracellular
neurofibrillary tangles (NFTs) and brain volume reduc-
tion [4,5]. However, VBM studies of GMV in AD yield
variable and conflicting evidence supporting these
models; for example, some studies find regional grey
matter atrophy mainly restricted to the medial temporal
structures including bilateral hippocampus, amygdala
and entorhinal cortex, as well as the posterior cingulate
gyrus and medial thalamus [6,7], whereas a study found
GM loss only in temporoparietal cortex [8].
Signed Differential Mapping (SDM) is a recently-

developed statistical technique, which adopts and com-
bines various positive features of activation likelihood
estimate (ALE) and multilevel kernel density analysis
(MKDA), in order to quantify the reproducibility of
neuroimaging findings and generate insights difficult to
observe in isolated studies [9]. Therefore, in the present
study, we conducted a voxel-wisely meta-analysis VBM
studies on AD using an SDM software to identify the
consistent regional grey matter abnormalities in AD.

Methods
Search strategy
Systematic and comprehensive searches were conducted
in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), ISI
Web of Science (www.isiknowledge.com), Embase (www.
embase.com/), and Medline databases (http://www.
medline.com/) from 1995 to 25 June 2014 using the
keywords “Alzheimer’s disease” OR “AD”, AND “voxel*”,
“morphometry”,OR “vbm”. A hand searching was also per-
formed in the reference lists of inclusion articles. The
studies were considered for inclusion if they (1) reported
VBM (GM density or volume) comparison between pa-
tients with AD and HC subjects; (2) reported whole brain
results of changes in a stereotactic space in three dimen-
sional coordinates (x, y, z); (3) used significance thresholds
either corrected for voxel based multiple comparisons or
uncorrected with spatial extent thresholds; and (4) were
published in English with peer review. In studies that met
the aforementioned inclusion criteria, the largest group
size was selected if the data overlapped with the inter-
subgroups or with another study. The studies were ex-
cluded if they suffered from at least one of the following
deficiencies: (1) sufficient data could not be obtained even
when more information was asked from the correspond-
ing authors by phone or email; (2) there were fewer than
nine subjects in either AD group or HC group; (3) the
data overlapped with those of another publication; (4)
there were uncorrected results and the spatial extent
threshold was not reported; and (5) there was no HC
group; (6) studies limit their analyses to specific ROI; (7)
the patient-group included subgroups of “vascular” AD.
and (8) it was not clear if the coordinates were in the
Talairach or MNI (Montreal Neurological Institute) space
(necessary for the text files in SDM software). The method
used in the current study was in accordance with the
Meta-analysis Of Observational Studies in Epidemiology
(MOOSE) guidelines for meta-analyses of observational
studies [10].

Data extraction
The coordinates in each study were independently ex-
tracted by two neurologists (Wang WY and Yin RH) ac-
cording to the ES-SDM method [9].

Voxel-based meta-analysis (VBM)
The ROI is one of the most commonly used methods to
address morphometric changes in the brain [2]. This
method manually drew and calculated the brain regions
of interest by investigators, then compared their volume
in AD to HC. However, major limitations of the ROI ap-
proaches are that it requires a priori decision concerning
which structures need to be evaluated and that regions
showing abnormal GM volume might be part of a large
ROI, or spread over different ROIs, thereby potentially
reducing statistical power of the underlying morpho-
logical analysis [4]. This analysis was performed in a
standard process using the SDM software (http://www.
sdmproject.com/-software/) to compare the GM changes
between the AD and HC groups. A systematic whole-
brain voxel-based jackknife sensitivity analysis was per-
formed to test the replicability of the results. All these
processes were referred to the SDM Tutorial (http://
sdmproject.com/software/Tutorial.pdf) and publications.
The full-width at half maximum (FWHM) in SDM are
set at 20 mm because in previous simulations it has been
found to have an excellent control of false positives re-
sults in a preprocessing step [9]. The statistical threshold
was set to be a p-value of < 0.005 without correction for
false discovery rate (FDR) as this was found to optimally
balance sensitivity and specificity [9]. Residual hetero-
geneity was not significant (τ = 0.154, Q = 83.926, df = 28,
P = 1.79 × 10−7). The SDM software editor was also con-
tacted by email when necessary.

Result
Included studies and sample characteristics
The initial literature search identified 821 potentially
relevant articles, of which 68 met the inclusion criteria.
After full text screening, 38 articles were excluded for
different reasons (Figure 1). Finally, 30 [7,11-39] articles
published between 1995 and 2014 met the selection cri-
teria and had accessible information concerning grey
matter changes between AD and HC. The clinical and
demographic data of participants in all included studies
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Figure 1 Flowchart describing the approach used to identify all eligible studies of meta-analysis.
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are presented in Table 1. The technical details of the in-
cluded studies are shown in Table 2. A total of 960
people with AD and 1195 HC were included. In each
study, no statistically significant difference was found in
age, gender between the AD and HC, as the original
studies were already well matched in this respect. Sensi-
tivity analysis was first used and no outliers were found
in this study.

Global GM volumes
This analysis was not carried out because of the small
number of studies with a detailed global GM density or
volume.

Regional differences
The included studies reported GM reductions at 334 co-
ordinates in AD compared with NC. A group compari-
son of AD patients and HC was carried out. AD patients
had considerable smaller GMV in the limbic regions (left
parahippocampl gyrus and left posterior cingulate gyrus).
In addition, there were GM decreases in right fusiform
gyrus and right superior frontal gyrus (as shown in
Table 3 and Figure 2) in patients with AD from the
SDM map threshold of P < 0.005 with voxels > 10. The
patients with AD had no significant GM increase in any
region compared with the HC subjects in all included
studies.

Sensitivity analysis
A whole-brain voxel-based jackknife sensitivity analysis
was conducted to test the replicability of the results.
This consists of repeating the main statistical analysis 30
times but systematically removing one different study
each time to ensure that no single study will bias the
combined results and recalculating the stability of the
remaining studies. As shown in Table 3, the whole brain
jackknife sensitivity analysis indicated a GM reduction in
left parahippocampal gyrus and left posterior cingulate
gyrus highly replicable because they were preserved
throughout all of the 30 combinations of studies. Grey
matter decreases in right fusiform gyrus failed to emerge
in one of the study and right superior frontal gyrus failed
to emerge in two of the study.

Analyses of subgroups
The above results were highly reproducible when the
analyses were repeated and limited to 12-mm smoothing
kernel or 1.5 T MRI scanner to remove the potential
confounding effects of methodological differences.

Meta-regression
The meta-regression analysis showed that the higher
neuropsychological test scores in AD (Mini Mental State
Examination (MMSE) scores- used as a concise screen-
ing tool that assesses the severity of cognitive impair-
ment and reflects cognitive in the progression of AD
[40], available in all the studies) was associated with
decreased grey matter volumes in the left parahippocam-
pal gyrus ( −18,-16, −28; SDM-Z = −3.963; voxels = 490;
P = 3.0965 × 10−5).

Discussion
To our knowledge, this is the first meta-analysis of
voxel-based morphometry studies of grey matter volume
in AD and HC subjects using ES-SDM software. The
present voxel-wise meta-analysis mainly found that



Table 1 Demographic and clinical characteristics of VBM studies for GMV on AD in meta-analysis

Study Number Age Education MMSE Diagnostic criteria

(Female) (Years) (Years)

AD NC AD NC AD NC AD NC

Guo2014 [11] 35 (23) 27 (11) 72.4 (8.5) 69.2 (6.5) NA NA 19.7 (4.1) 28.9 (1.0) ICD-10 criteria

Teipel2012 [30] 137 (79) 143 (72) 72.5 (8.3) 69.2 (5.9) 10.2 (3.3) 13.1 (3.8) 20.6 (5.3) 28.8 (1.1) NINCDS-ADRDA

Rami2012 [12,62] 32 24 75.5 (5.5) 71.4 (6.6) 8.3 (2.9) 9.0 (4.7) 22.5 (3.3) 28.1 (1.4) NINCDS-ADRDA

Gili2011 [29] 11 (4) 10 (3) 71.9 (7.9) 64.1 (10.5) 9.9 (4.9) 14.3 (3.4) 19.7 (4.5) 28.34 (2.0) NINCDS-ADRDA

Lehmann2011 [13] 30 (16) 50 (33) 69.2 (8.9) 63.7 (9.6) NA NA NA NA NINCDS-ADRDA

Serra2010 [14] 9 (6) 13 (4) 72.4 (7.5) 64.1 (10.5) 9.9 (4.9) 14.3 (3.4) 18.2 (4.4) 28.9 (1.3) NINCDS-ADRDA

Guo2010 [23] 13 (7) 14 (8) 72.1 (6.5) 70.4 (3.5) NA NA 18.5 (3.5) 28.5 (0.6) NINCDS-ADRDA

Ibrahim2009 [22] 20 (11) 23 (18) 73.67 (7.58) 66.70 (5.82) 13.10 (2.95) 14.22 (2.36) 15.60 (7.20) 29.13 (0.99) NINCDS-ADRDA

Kanda2008 [15] 20 20 65.0 65.2 NA NA 17.5 29.0 NINCDS-ADRDA

Whitwell2007 [5,16] 38 (22) 38 (22) 65.3 (6.9) 65.9 (7.0) 12.5 14.0 17.0 29.0 NINCDS-ADRDA

Hamalainen2007 [24] 15 (10) 21 (17) 73.1 (6.7) 71.2 (4.9) 8.2 (2.7) 7.9 (2.9) 21.7 (3.7) 27.7 (2.0) NINCDS-ADRDA

DiPaola2007 [18] 18 (14) 18 (14) 64.3 (10.2) 65.4 (10.6) 8.8 (4.2) 8.1 (2.8) 16.9 (4.3) 29.0 (1.6) NINCDS-ADRDA

Samuraki2007 [28] 39 (20) 73 (36) 68.03 (8.76) 66.78 (8.34) NA NA 22.3 (3.3) 29.2 (0.8) NINCDS-ADRDA

Rabinovici2007 [17] 11 (6) 40 (23) 64.5 (9.7) 63.5 (5.8) 16.5 (2.9) 17.4 (2.4) 19.9 (6.9) 29.7 (0.5) NINCDS-ADRDA

Bozzali2006 [26] 22 (11) 20 (13) 67.9 (7.6) 65.8 (6.8) NA NA 19.8 (4.1) 27.3 (1.2) NINCDS-ADRDA

Shiino2006 [27] 40 (21) 88 (48) 71.1 (9.7) 68.7 (8.7) NA NA 18.03 (3.91) 29.09 (1.47) NINCDS-ADRDA

Ishii2005 [19] 30 (22) 30 (22) 66.8 (7.0) 66.8 (7.9) NA NA 14.7 (5.4) 24.0 (2.2) NINCDS-ADRDA

Hirata2005 [7] 61 (29) 82 (43) 70.6 (8.4) 70.1 (7.7) NA NA 26.0 (1.5) 28.7 (1.5) NINCDS-ADRDA

Boxer2003 [20] 11 (8) 15 (7) 69.6 (8.2) 65.1 (8.3) 16.3 (3.8) 16.6 (3.9) 20.2 (7.3) 29.5 (0.5) NINCDS-ADRDA

Frisoni2002 [21] 29 (23) 26 (17) 74 (9) 69 (8) 7 (4) 8 (3) 21 (4) 29 (1) NINCDS-ADRDA

Ohnishi2001 [25] 26 (15) 47 (16) 72.1 (1.1) 28.5 (6.0) NA NA 20.7 (3.1) NA NINCDS-ADRDA

Matsuda2002 [34] 15 (4) 25 (9) 71.1 (7.1) 71.2 (7.3) NA NA 21.5 (2.9) 29.5 (0.6) DSM-IV

Busatto2003 [35] 14 (5) 14 (6) 72.2 (7.2) 69.4 (5.9) 9.1 (4.2) 7.1 (4.7) 20.7 (3.1) 29.1 (0.5) NINCDS-ADRDA

Raji2009 [31] 33 (20) 169 (96) 82.8 (5.16) 77.57 (3.62) NA NA NA NA NINCDS-ADRDA

Honea2009 [32] 61 (37) 56 (33) 74.3 (6.3) 73.3 (6.2) 15.3 (3.3) 16.4 (2.2) 26.2 (3.7) 29.4 (0.8) NINCDS-ADRDA

Brenneis2004 [36] 10 (3) 10 (6) 73.1 (7.6) 65.1 (8.1) NA NA 17.4 (7.9) 28.8 (1.6) DSM-IV

Hirao2006 [39] 61 (29) 61 (31) 70.6 (8.4) 70.2 (7.3) NA NA 26.0 (1.5) 28.7 (1.5) NINCDS-ADRDA

Brambati2009 [33] 10 (5) 13 (8) 71.5 (5.9) 75.0 (5.0) 12.6 (4.7) 14.9 (5.0) 22.5 (2.3) 29.1 (1.2) NINCDS-ADRDA

Baxter2006 [38] 15 (4) 15 (8) 75.5 (7.8) 76.4 (7.9) 14.7 (2.9) 15.3 (2.9) 14–28 28.5 (1.1) NINCDS-ADRDA

Zahn2005 [37] 10 (6) 10 (5) 66.5 (8.9) 65.8 (7.8) NA NA 23.6 (2.8) NA NINCDS-ADRDA

Key: AD, Alzheimer’s disease; NC, normal cognition subjects; MMSE, the Mini Mental State Examination; NA, not available; VBM, voxel-based morphometry; GMV,
Grey matter volume; NINCDS-ADRDA, National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders
Association; DSM, Diagnostic and Statistical Manual of Mental Disorders; ICD-10 criteria, International Classification of Diseases, 10th Revision.
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patients with AD have regional GM volume reductions
in the limbic regions (left parahippocampl gyrus and
left posterior cingulate gyrus). In addition, there were
GM decreases in right fusiform gyrus and right super-
ior frontal gyrus, medial orbital. The results remained
largely unchanged when jackknife sensitivity analysis
was performed. This indicates that the results were
robust and highly replicable.
It has been widely accepted that at rest state, important

brain areas-posterior cingulate cortex combines precu-
neus, lateral temporal cortex, medial prefrontal cortex,
and inferior parietal lobule organized into a functionally
relevant networks, the “default mode network” (DMN)
[41], which is correlated with episodic memory function-
ing. Several studies have demonstrated that AD is associ-
ated with DMN resting state functional MRI disruptions
compared to HC, which is marked by abnormalities in
structural interactions and functional connectivity [42-44].
In a previous study using single photon emission com-
puted tomography (SPECT), Pagani et al. proposed that
posterior cingulate cortex covaried with the left lateral
parietal lobe [45]. In addition, Jacobs et al. demonstrated



Table 2 Technique details of VBM studies for GMV on AD in meta-analysis

Study Scanner (T) Software FHWH (mm) P-value Coordinates

Guo2014 [11] 3 SPM8 6 P < 0.05 (FDR-corrected) 14

Teipel2012 [30] 1.5 (3) SPM8 8 P < 0.001, uncorrected for multiple comparisons 22

Rami2012 [12,62] 3 SPM5 8 P < 0.0001 (uncorrected) 4

Gili2011 [29] 3 SPM5 12 P < 0.001 uncorrected 9

Lehmann2011 [13] 1.5 SPM5 6 Multiple-comparison correction FDR < 0.05 1

Serra2010 [14] 3 SPM5 12 P < 0.05 (FEW corrected) 17

Guo2010 [23] 3 SPM5 8 P < 0.05 (FDR Corrected) 16

Ibrahim2009 [22] 1.5 SPM5 10 p-value < 0.005 with the FDR corrected 15

Kanda2008 [15] 1.5 SPM2 12 P < 0.01, corrected 7

Whitwell2007 [5,16] 1.5 SPM5 8 P < 0.05, corrected for multiple comparisons 1

Hamalainen2007 [24] 1.5 SPM5 12 P < 0.05, corrected 19

DiPaola2007 [18] 1.5 SPM5 10 P < 0.05 (FWE corrected) 18

Samuraki2007 [28] 1.5 SPM2 12 P < 0.001,correct for multiple comparisons 5

Rabinovici2007 [17] 1.5 SPM2 12 P < 0.05 (FWE- corrected) 19

Bozzali2006 [26] 1.5 SPM2 12 P < 0.05 corrected 19

Shiino2006 [27] 1.5 SPM99 12 P < 0.05 corrected 16

Ishii2005 [19] 1.5 SPM5 12 P < 0.05, corrected 3

Hirata2005 [7] 1 SPM5 12 P < 0.001, correction for multiple non-independent comparisons 2

Boxer2003 [20] 1.5 SPM5 12 P < 0.05,corrected for multiple comparisons 3

Frisoni2002 [21] 1.5 SPM99 8 P < 0.05, corrected for multiple comparisons 34

Ohnishi2001 [25] 1.0 SPM96 12 P < 0.001, correct for multiple comparisons 2

Matsuda2002 [34] 1.0 SPM99 12 P < 0.05 correct for multiple comparisons 13

Busatto2003 [35] 1.5 SPM99 8 P < 0.001, uncorrected 9

Raji2009 [31] 1.5 SPM2 10 P < 0.05 (FDR Corrected) 5

Honea2009 [32] 3.0 SPM5 10 P < 0.05, FWE corrected 13

Brenneis2004 [36] 1.5 SPM99 8 and 10 P < 0.05 corrected for small volumes 14

Hirao2006 [39] 1.0 SPM2 12 P < 0.001; corrected for multiple comparisons 2

Brambati2009 [33] 3.0 SPM5 8 p < 0.001 uncorrected 17

Baxter2006 [38] 1.5 SPM2 12 and 8 p-values <0.0001 uncorrected 6

Zahn2005 [37] 1.5 SPM2 8 P < 0.001 uncorrected 4

Key: AD, Alzheimer’s disease; FDR, false discovery rate; FEW, family-wise error; FWHM, full width at half-maximum; SPM, Statistical Parametric Mapping; T, Tesla;
VBM, voxel-based morphometry; GMV, grey matter volume.
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that grey matter atrophy in inferior parietal lobule was
connected to the prefrontal cortices [46]. Recently, Wang
and colleagues employing Bayesian network models and
integrating grey matter volume information from multiple
brain regions found increased correlations from Left infer-
ior temporal cortex to Left hippocampus, Left hippocam-
pus to Right inferior temporal cortex, Right hippocampus
to Right inferior temporal cortex, and Right inferior par-
ietal cortex to Posterior cingulate cortex in AD patients
[47]. The morphological changes in the grey matter in dif-
ferent brain regions abide by covariance pattern, reflecting
the DMN network attributes of the human brain, and also
suggest that the atrophy of these structures is not inde-
pendent, but that primary neurodegeneration in one of
the structures that could lead to secondary degeneration
of regions connected to it.
A previous reported meta-analysis of ALE structural

MRI studies found evidence of volume reductions in the
medial temporal lobes (MTL) (including entorhinal cor-
tex, hippocampus, parahippocampus, amygdala and un-
cus), temporal, frontal and cingulate cortices [48]. This
is in line with our meta-analysis. However , our study
did not found volume reductions in parietal and insular
cortices. This may be due to the inclusion of recently
available data and the improvement of meta-analytic
method.
Grey matter differed in AD and Dementia with

Lewy bodies (DLB) when compared the result of the



Table 3 Regional differences in grey matter volume between individuals with AD and HC

Region Maximum Cluster Jackknife sensitivity analysis
(combination of studies
detecting the differences)

MNI coordinates
x y z

SDM value P value Number
of voxels

Clusters breakdown
(no. of voxels)

Left parahippocampl
gyrus, BA36

−30,-10,-28 −6.544 ~0 3440 Left parahippocampal gyrus (676) 30 out of 30

Left insula (515)

Left temporal gyrus (879)

Left hippocampus (706)

Left inferior frontal gyrus (450)

Left rolandic operculum (214)

Right fusiform gyrus 34,-8,-30 −6.257 ~0 5838 Right temporal gyrus (3300) 29 out of 30

Right parahippocampal gyrus (813)

Right hippocampus (521)

Right rolandic operculum (447)

Right insula (757)

Left posterior cingulate
gyrus, BA 23

−8,-48,32 −3.880 ~0 1866 Left /Right precuneus (1056) 30 out of 30

Left/Right posterior cingulate
gyrus (358)

Left/Right median cingulate/
paracingulate gyri (452)

Right superior frontal
gyrus, medial orbital,
BA 11

4,34,-12 −3.362 0.000474795 221 Left/Right superior frontal gyrus,
medial orbital (84)

28 out of 30

Left /Right gyrus rectus (23)

Left anterior cingulate/
paracingulate gyri (18)

Regions identified by meta-analysis of coordinates from Twenty one studies (voxelwise p < 0.005 and FWHM 20 mm).
Key: AD, Alzheimer’s disease; HC, healthy controls; MNI, Montreal Neurological Institute; SDM, signed differential mapping; GMV, Grey matter volume; BA, Brodmann area.

Figure 2 Brat v1.0 (www.brainnetome.org/brat) software was
used to visualize the anatomical distribution of grey matter
atrophy in AD. PHG.L: left parahippocampl gyrus; PCG.L: left
posterior cingulate gyrus; SFG.R: right superior frontal gyrus; FFG.R:
right fusiform gyrus; L: left, R: right., A: anterior, P: posterior.
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meta-analysis using the SDM methodologies. AD was
characterized by GMV decreased in the MTL but not
the lateral temporal lobe are coincident with the recently
published meta-analysis showed that medial temporal lobe
structures were relative preserved in DLB compared with
AD [49]. In AD, the MTL have been proved associated
with the degree of memory, regions which are involved in
encoding and retrieval of episodic and spatial memory
[50,51]. Pathological investigations in AD confirmed our
findings, where the neurofibrillary tangles and amyloid
plaques observed from the beginning [52], and subse-
quently affects the posterior limbic system due to its
close connections to the posterior sector of the cingu-
late gyrus. So far we could not find the Tau pathology
are connected with GMV loss in AD in MTL. Further-
more, the postmortem autopsy also have been testified
it as cardinal structures affected with loss of neurons in
patients with AD [53] of which may explanation of the
MTL atrophy and supports our results. A previous
meta-analysis of structural and functional imaging stud-
ies also revealed consistent volumetric reduction within
the MTL was the most sensitive measure to identify AD
in patients with a duration of illness greater than 4 years
[54]. The volumetric reductions seen in this region may

http://www.brainnetome.org/brat
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help explain reports of episodic memory loss in early
stages of AD.
One of the key findings of the present study is the GM

volume reduction in the left parahippocampal gyrus, the
most important cortical input and output region of the
hippocampus and mediates corticohippocampal commu-
nication. An important study by Burgmans et al. found
the association with memory decline is larger in the pos-
terior parahippocampus than in the hippocampus and en-
torhinal cortex [55], and parahippocampal gyrus atrophy
in AD are related to patients’ anterograde memory impair-
ments. In addition, the finding of robust GM loss in the
parahippocampal gyrus is in line with one previous ROI-
based quantitative volumetric MRI study [56]. Previous
histological studies have already revealed that entorhinal
cortex as the earliest neuropathological changes in AD pa-
tients, which is the anterior part of the parahippocampal
gyrus [57]. Abnormalities in this region is also confirmed
by previous researches through other neuroimaging
methods such as functional MRI (fMRI) [58], technetium
(Tc-99 m) hexamethylpropyleneamine oxime (TC-99 m
HMPAO) SPECT [59] and Pittsburgh Compound B [60].
Our meta-analysis revealed grey matter reductions in

left posterior cingulate gyrus. Evidence from the positron
emission tomography (PET) studies using [11C]PiB
(Pittsburgh compound B) binds to amyloid, have identi-
fied that this region was related to the disease process
[61]. The finding of robust GM loss in parietal regions is
in line with a recent fMRI study, which have found atro-
phy in this region in the very early progression of AD
[62]. This result is also in accordance with previous
Fluorodeoxyglucose (FDG) PET studies which reported
metabolic decline in the posterior cingulate cortex of pa-
tients with AD [63]. In addition, using dynamic suscepti-
bility contrast magnetic resonance imaging, Hauser and
colleagues have detected that the posterior cingulate
gyrus perfusion was significantly decreased in patients
with AD compared to patients with MCI or HC [64].
Likewise, Yoshida et al. revealed decreased regional cere-
bral blood flow and regional cerebral protein synthesis
in this region. The probable explanation of the posterior
cingulate gyrus atrophy is that neuronal atrophy and
the fibrillary amyloid deposition which need further
investigation.
The current study has a number of strengths. The

most importantly utilized SDM methodologies, a well-
validated, automated method of meta-analyzing data
from multiple VBM studies using the reported peak co-
ordinates to recreate (to a limited extend) the original
maps, thus accounting for both positive and negative dif-
ferences [9]. This technique has already been success-
fully applied in a number of previous meta-analysis of
VBM studies on several neurologic and neuropsycho-
logical disorders such as amyotrophic lateral sclerosis
[65], obsessive-compulsive disorder [66], bipolar disorder
[67] and DLB [49]. The ES-SDM that we used in this
study is a new version of the SDM meta-analytic method
featuring two methodological improvements: combining
peak coordinates and statistical parametric maps and use
of well-established statistics accounting for within- and
between-study variance [9]. The new version-ES-SDM
has been proved to be valid and superior to previous
coordinate-based meta-analytical methods such as ALE
and the default settings, and also optimizes the sensitiv-
ity while protecting against the false positives [9].

Limitations
There are several methodological limitations of this
study, some of which are inherent to all meta-analytical
approaches. One limitation is the accuracy of the results,
because peak-based meta-analyses are based on pooling
of stereotactic coordinates rather than on raw statistical
brain maps, and this may lead to less accurate results.
Nevertheless, obtaining and analysing the raw images
from these studies is logistically and technically difficult.
Second, methodological differences of VBM studies, for
instance different preprocessing protocols (traditional or
optimized), smoothing kernels, and statistical thresholding
methods cannot be entirely ruled out even if a subgroup
analysis was performed. Third, as mentioned above, our
regression analyses should be taken cautiously because
they included a small number of studies and variability in
the data was limited. Fourth, several of the included stud-
ies reported grey matter density rather than volume. The
mean density of the GM is derived from the percentage of
absolute GM volume divided by total brain volume, which
might result in different locations of deficit areas from re-
sults achieved by VBM measurements of GM volume.
The meta-analysis will subsequently influence the results
by different locations. Finally, although voxel-wise meta-
analytical methods provide excellent control for false-
positive results, it is difficulty to avoiding false-negative
results completely. Since the SDM approach does not use
effect sizes for non-significant changes (e.g., those that
have p <0.005 and do not survive correction for multiple
comparisons), in some regions with some trends towards
significant or even just differences that appear not to be
significant because of the effect size, it might cause false
negative findings.

Conclusion
The results of meta-analysis implicate regional grey mat-
ter reduction in AD is a functionally relevant networks
(DMN) of prefrontal, limbic, temporal regions involved
in the episodic memory functioning and attentional pro-
cessing compared with HC. A better understanding of
the neural network implicated in AD may inform the
diagnosis and treatment of this condition in the future.
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