217 research outputs found

    Electrocoagulation removal of anthraquinone dye Alizarin Red S from aqueous solution using aluminum electrodes: kinetics, isothermal and thermodynamics studies

    Get PDF
    Electrocoagulation (EC) was used for the removal of anthraquinone dye, Alizarin Red S (ARS) from aqueous solution. The process was carried out in a batch electrochemical cell with Al electrodes in a monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process were investigated. Equilibrium was attained after 10 minutes at 30 °C. Pseudo-first order, pseudo-second order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetics of the electrocoagulation process; pseudo-first order and Avrami models best fitted the data. Experimental data were analyzed using six isotherm models: Langmuir, Freudlinch, Redlich–Peterson, Temkin, Dubinin–Radushkevich and Sips isotherms and it was found that the data fitted well with Dubinin–Radushkevich and Sips isotherm model. The study showed that the process depended on the current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (ΔGo, ΔHo and ΔSo) indicated that the process is spontaneous and endothermic in nature

    Female genital tuberculosis – still a common cause of primary amenorrhea in developing countries

    Get PDF
    Primary amenorrhea is defined as, no menses by age 14yrs in absence of growth or development of secondary sexual characteristics and no menses by age 16yrs regardless of the presence of normal growth or development of secondary sexual characteristics. Although pulmonary tuberculosis remains the commonest and the most infectious type of tuberculosis, extra pulmonary tuberculosis is becoming more prevalent especially in young women throughout the world. We report a case of young woman presenting as primary amenorrhea apparently having no signs and symptoms of tuberculosis. 20 yrs old unmarried girl was referred for primary amenorrhea with normal secondary sexual characters and presence of uterus, tubes and ovaries on abdominal scan. Hormonal assay and karyotyping was normal. She had negative progesterone challenge test and estrogen progesterone challenge test. Diagnosis of genital tuberculosis was confirmed by diagnostic hysterolaparoscopy and positive tubercular polymerase chain reaction and culture.  Hysterolaparoscopy is a key tool for confirmation of diagnosis in cases of primary amenorrhea when the dilemma exists

    Functional enrichment by direct plasmid recovery after Fluorescence Activated Cell Sorting

    Get PDF
    Iterative screening of expressed protein libraries using fluorescence-activated cell sorting (FACS) typically involves culturing the pooled clones after each sort. In these experiments, if cell viability is compromised by the sort conditions and/or expression of the target protein(s), rescue PCR provides an alternative to culturing but requires re-cloning and can introduce amplification bias. We haveoptimized a simple protocol using commercially available reagents to directly recover plasmid DNA from sorted cells for subsequenttransformation. We tested our protocol with 2 different screening systems in which 60% of the sorted cell population was recovered

    Single-cell characterization of autotransporter mediated Escherichia coli surface display of disulfide-bond containing proteins

    Get PDF
    Autotransporters (ATs) are a family of bacterial proteins containing a C-terminal ?-barrel-forming domain that facilitates the translocation of N-terminal passenger domain whose functions range from adhesion to proteolysis. Genetic replacement of the native passenger domain with heterologous proteins is an attractive strategy not only for applications such as biocatalysis, live-cell vaccines, and protein engineering but also for gaining mechanistic insights toward understanding AT translocation. The ability of ATs to efficiently display functional recombinant proteins containing multiple disulfides has remained largely controversial. By employing high-throughput single-cell flow cytometry, we have systematically investigated the ability of the Escherichia coli AT Antigen 43 (Ag43) to display two different recombinant reporter proteins, a single-chain antibody (M18 scFv) that contains two disulfides and chymotrypsin that contains four disulfides, by varying the signal peptide and deleting the different domains of the native protein. Our results indicate that only the C-terminal ?-barrel and the threaded ?-helix are essential for efficient surface display of functional recombinant proteins containing multiple disulfides. These results imply that there are no inherent constraints for functional translocation and display of disulfide bond-containing proteins mediated by the AT system and should open new avenues for protein display and engineering

    Implications of Autonomy for the Expressiveness of Policy Routing

    Full text link

    Studies on Distribution of Biosurfactant Producing Bacteria in Contaminated and Undisturbed Soils of Kanchipuram

    Get PDF
    Abstract: Ever increasing environmental concern about chemical surfactants triggers attention to microbial derived surface-active compounds, essentially due to their low toxicity and biodegradable nature. At present, biosurfactants are predominantly used in remediation of pollutants, in the enhanced transport of metabolites in bacteria, in enhanced oil recovery, as cosmetic additives, in biological control. However, little is known about the distribution and prevalence of biosurfactant-producing bacteria in the environment. The primary objective of this study was to determine how common culturable surfactant producing bacteria are present in contaminated and undisturbed soil samples in and around Kanchipuram (12°50'23"N 79°42'0"E), Tamilnadu, India. A series of each 5 contaminated and undisturbed soils were collected and plated on R2A agar. Totally, 155 morphologically different bacterial isolates were obtained and qualitatively screened for biosurfactant production in mineral salts medium containing 2% glucose. Out of 155 isolates, eight isolates were positive for biosurfactant production, representing most of the soils tested. Quantitative estimation of surface activity identified two potent biosurfactant producing strains Bacillus sp.BS3 and Pseudomonas sp. Maximum surface activity was observed to be 26.58 x 10 -3 nm -1 and 20.60 x 10 -3 nm -1 respectively for Bacillus sp.BS3 and Pseudomonas sp. BS5. The present study is a preliminary demonstration that the Indian soils are rich in biosurfactant producing bacteria, which can be exploited for industrial production of biosurfactants

    Abnormal Complement Activation and Inflammation in the Pathogenesis of Retinopathy of Prematurity

    Get PDF
    Retinopathy of prematurity (ROP) is a neurovascular complication in preterm babies, leading to severe visual impairment, but the underlying mechanisms are yet unclear. The present study aimed at unraveling the molecular mechanisms underlying the pathogenesis of ROP. A comprehensive screening of candidate genes in preterms with ROP (n = 189) and no-ROP (n = 167) was undertaken to identify variants conferring disease susceptibility. Allele and genotype frequencies, linkage disequilibrium and haplotypes were analyzed to identify the ROP-associated variants. Variants in CFH (p = 2.94 x 10(-7)), CFB (p = 1.71 x 10(-5)), FBLN5 (p = 9.2 x 10(-4)), CETP (p = 2.99 x 10(-5)), and CXCR4 (p = 1.32 x 10(-8)) genes exhibited significant associations with ROP. Further, a quantitative assessment of 27 candidate proteins and cytokines in the vitreous and tear samples of babies with severe ROP (n = 30) and congenital cataract (n = 30) was undertaken by multiplex bead arrays and further validated by western blotting and zymography. Significant elevation and activation of MMP9 (p = 0.038), CFH (p = 2.24 x 10(-5)), C3 (p = 0.05), C4 (p = 0.001), IL-1ra (p = 0.0019), vascular endothelial growth factor (VEGF) (p = 0.0027), and G-CSF (p = 0.0099) proteins were observed in the vitreous of ROP babies suggesting an increased inflammation under hypoxic condition. Along with inflammatory markers, activated macrophage/microglia were also detected in the vitreous of ROP babies that secreted complement component C3, VEGF, IL-1ra, and MMP-9 under hypoxic stress in a cell culture model. Increased expression of the inflammatory markers like the IL-1ra (p = 0.014), MMP2 (p = 0.0085), and MMP-9 (p = 0.03) in the tears of babies at different stages of ROP further demonstrated their potential role in disease progression. Based on these findings, we conclude that increased complement activation in the retina/vitreous in turn activated microglia leading to increased inflammation. A quantitative assessment of inflammatory markers in tears could help in early prediction of ROP progression and facilitate effective management of the disease, thereby preventing visual impairment

    Increased Catalase Activity and Maintenance of Photosystem II Distinguishes High-Yield Mutants From Low-Yield Mutants of Rice var. Nagina22 Under Low-Phosphorus Stress

    Get PDF
    An upland rice variety, Nagina22 (N22) and its 137 ethyl methanesulfonate (EMS)-induced mutants, along with a sensitive variety, Jaya, was screened both in low phosphorus (P) field (Olsen P 1.8) and in normal field (Olsen P 24) during dry season. Based on the grain yield (YLD) of plants in normal field and plants in low P field, 27 gain of function (high-YLD represented as hy) and 9 loss of function (low-YLD represented as ly) mutants were selected and compared with N22 for physiological and genotyping studies. In low P field, hy mutants showed higher P concentration in roots, leaves, grains, and in the whole plant than in ly mutants at harvest. In low P conditions, Fv/Fm and qN were 24% higher in hy mutants than in ly mutants. In comparison with ly mutants, the superoxide dismutase (SOD) activity in the roots and leaves of hy mutants in low P fields was 9% and 41% higher at the vegetative stage, respectively, but 51% and 14% lower in the roots and leaves at the reproductive stage, respectively. However, in comparison with ly mutants, the catalase (CAT) activity in the roots and leaves of hy mutants in low P fields was 35% higher at the vegetative stage and 15% and 17% higher at the reproductive stage, respectively. Similarly, hy mutants in low P field showed 20% and 80% higher peroxidase (POD) activity in the roots and leaves at the vegetative stage, respectively, but showed 14% and 16% lower POD activity at the reproductive stage in the roots and leaves, respectively. Marker trait association analysis using 48 simple sequence repeat (SSR) markers and 10 Pup1 gene markers showed that RM3648 and RM451 in chromosome 4 were significantly associated with grain YLD, tiller number (TN), SOD, and POD activities in both the roots and leaves in low P conditions only. Similarly, RM3334 and RM6300 in chromosome 5 were associated with CAT activity in leaves in low P conditions. Notably, grain YLD was positively and significantly correlated with CAT activity in the roots and shoots, Fv/Fm and qN in low P conditions, and the shoots’ P concentration and qN in normal conditions. Furthermore, CAT activity in shoots was positively and significantly correlated with TN in both low P and normal conditions. Thus, chromosomal regions and physiological traits that have a role in imparting tolerance to low P in the field were identified
    corecore