68 research outputs found

    Network Traffic Anomaly-Detection Framework Using GPUs

    Get PDF
    Network security has been very crucial for the software industry. Deep packet inspection (DPI) is one of the widely used approaches in enforcing network security. Due to the high volume of network traffic, it is challenging to achieve high performance for DPI in real time. In this thesis, a new DPI framework is presented that accelerates packet header checking and payload inspection on graphics processing units (GPUs). Various optimizations were applied to GPU-version packet inspection, such as thread-level and block-level packet assignment, warp divergence elimination, and memory transfer optimization using pinned memory and shared memory. The performance of the pattern-matching algorithms used for DPI was analyzed by using an assorted set of characteristics such as pipeline stalls, shared memory efficiency, warp efficiency, issue slot utilization, and cache hits. The extensive characterization of the algorithms on the GPU architecture and the performance comparison among parallel pattern-matching algorithms on both the GPU and the CPU are the unique contributions of this thesis. Among the GPU-version algorithms, the Aho-Corasick algorithm and the Wu-Manber algorithm outperformed the Rabin-Karp algorithm because the Aho-Corasick and the Wu-Manber algorithms were executed only once for multiple signatures by using the tables generated before the searching phase was begun. According to my evaluation on a NVIDIA K80 GPU, the GPU-accelerated packet processing achieved at least 60 times better performance than CPU-version processing

    Mechanical characterization of lime-cement mortars: E-modulus and fracture energy

    Get PDF
    In masonry constructions, the choice of mortar composition is usually guided by requirements of the final application, which could range from new constructions to conservation projects. Often, lime and cement are combined together, to overcome their individual shortcomings and consequently serve as a suitable binder in masonry mortars. Depending on their proportion in the mixture, it may be possible to obtain a desired range of characteristics in different mechanical properties like strength and stiffness. However, existing studies exploring this subject are scarce. Therefore, this work aims at adopting a systematic approach to studying the effect of different lime-cement ratios on the mechanical properties of masonry mortars, specifically targeting a discussion on E-modulus and fracture energy. Three distinct mixes with quantities of lime varying from 25% to 67% (by volume) have been studied. The benefits and trade-offs associated with substitution of different quantities of cement with lime in mortars, have been explored with regard to resistance to crack propagation.EuLA - European Lime Association. FCT PhD grant for the 1st author. European Lime Association for funding this project. Funding provided by the Portuguese Foundation for Science and Technology (FCT) to the Research Project PTDC/ECM-EST/1056/2014 (POCI-01-0145-FEDER-016841), as well to the Research Unit ISISE (POCI-01-0145-FEDER-007633

    Mechanical properties of lime–cement masonry mortars in their early ages

    Get PDF
    Lime–cement mortars are often used in restoration of existing buildings (especially twentieth century onward) as well as new constructions, in order to combine the individual strengths of either type of binder. Despite the knowledge that mortars have a significant impact on the non-linear mechanical behaviour of masonry from the earliest moments of construction, literature that systematically quantifies the impact of adding lime to cement mortars, or vice versa is scarce and scattered. This work is therefore focussed on bridging the research gap that exists in lime–cement masonry mortars with regard to their mechanical properties in the early ages (up to 7 days of curing). Five different mix compositions have been studied with 1:3 binder-aggregate ratio and 10% to 75% lime content in the binder, both by volume. Changes in properties like mechanical strength and stiffness along with ultrasound pulse velocity have been quantified, correlated and associated with change in quantity of lime in the binder (by volume) of the mortar. It was found that every 10% increase in the quantity of lime in the binder led to a 14% decrease in mechanical strength and a corresponding 12% decrease in stiffness, at 7 days of curing age. E-modulus was found to evolve faster than flexural strength, which in turn was found to evolve faster than compressive strength. Impact of curing temperature and the concept of activation energy has been addressed for the mix 1:1:6 (Cement:Lime:Sand).EuLA - European Lime Association; FCT Phd Scholarship of 1st author. Portuguese Foundation for Science and Technology (FCT) to the Research Project PTDC/ECM-EST/1056/2014 (POCI-01-0145-FEDER-016841), as well to the Research Unit ISISE (POCI-01-0145-FEDER-007633

    Impact of moisture curing conditions on mechanical properties of lime-cement mortars in early ages

    Get PDF
    Blended lime-cement mortars, which are frequently used in masonry construction, mature as a result of two different phenomena, namely lime carbonation and cement hydration. At any given temperature, these two processes require different moisture conditions for optimal contribution to the mechanical performance of mortar. Since mortars have an impact on the non-linear behavior of masonry from the time of application, it is necessary to optimize their performance with regard to composition and curing conditions. It is expected that a suitable choice of mortar in conjunction with the unit will provide better performance of masonry by reducing risk of cracking and facilitating durability of masonry. This work aims at studying the impact of environmental relative humidity (RH) in the curing process of lime-cement mortars, focusing on their early age behavior. Two mixes with 25% and 67% lime in the binder (by volume), binder-aggregate ratio of 1:3 and target workability of 175±10 mm were chosen for the study. Mechanical properties like compressive strength, flexural strength, open porosity and density have been studied at 2, 4 and 7 days of curing age. Temperature was kept constant at 20°C while three distinct environmental humidity conditions were tested: sealed environment, 90% RH, and 60% RH. Results have been explored to understand how the evolution of basic mechanical properties changed as a function of curing RH. Curing in sealed conditions and 90% RH did not result in similar values of strength, in either of the two blended mixes. For the mix with 25% lime - 3C1L12S (25%), hardening appeared to be guided by cement hydration. For the mix with 67% lime - 1C2L9S (67%), curing in RH of 60% and 90% resulted in almost the same strength at day 7, demonstrating that lime carbonation may be important earlier than 7 daysEuLA - European Lime Association, FCT PhD Grant of 1st Author. European Lime Association for funding this project. Funding provided by the Portuguese Foundation for Science and Technology (FCT) to the Research Project PTDC/ECMEST/1056/2014 (POCI-01-0145-FEDER-016841), Research Unit ISISE (POCI-01-0145-FEDER-007633), and scholarship SFRH/BD/137358/201

    Influence of lime on strength of structural unreinforced masonry: toward improved sustainability in masonry mortars

    Get PDF
    The choice of a sustainable construction material needs to take into account not just the environmental impact of the material, but according to the 2030 Agenda for Sustainable Development by the UN, one also needs to consider ease of access, the utilization of locally available materials, and the durability and reliability of the construction itself. Mortared masonry has been used around the world for several hundred years as an accessible type of construction. In masonry mortars, lime and cement are often integrated together for combined advantages: enhanced workability, breathability, and better environmental performance due to the former, and higher strength and shorter setting duration due to the latter. However, despite being extensively studied for their effects on the mechanical properties of mortar, not much is known about the impact of varying lime and cement ratios in the binder on the mechanical performance of masonry as a whole. Variations in the properties of mortars do not always have a significant impact on the mechanical behavior of masonry structures. Therefore, this article details an experimental campaign to measure the compressive strength, E-modulus, flexural strength, and shear bond strength of masonry samples containing two distinct lime–cement mortars (1:2:9 and 1:1:6 cement:lime:sand) and one cement mortar (1:0:5). The results show that more than the presence of lime in the mortar, the strength of the mortar influenced the flexural strength of the masonry ranging from 0.1 to 1.2 MPa. No discernable correlation was observed between the presence of lime in the mortar and the cohesion in the masonry (0.29 to 0.41 MPa). The values of the compressive strength (6.0 to 7.2 MPa) and E-modulus (3.8 to 4.5 GPa) of the masonry decreased and pre-peak ductility increased with an increase in the quantity of lime in the mortar. The recommendations of Eurocode 6 for the flexural strength of the initial shear bond strength were found to be conservative for different mortar strength classes, and significantly unconservative for compressive strength (by 50% to 70%).This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020. The authors gratefully acknowledge the European Lime Association for funding this project. The funding provided by the Portuguese Foundation for Science and Technology (FCT) to the research project PTDC/ECM-EST/1056/2014 (POCI-01-0145-FEDER-016841), as well to the research unit ISISE (POCI-01-0145-FEDER-007633) and the scholarship SFRH/BD/137358/2018, is also gratefully acknowledged

    Aqua­bromidobis(dimethyl­glyoximato)cobalt(III)

    Get PDF
    In the title complex, [CoBr(C4H7N2O2)2(H2O)], a crystallo­graphic mirror plane bis­ects the mol­ecule, perpendicular to the glyoximate ligands. The geometry around the cobalt(III) atom is approximately octa­hedral with the four glyoximate N atoms forming the square base. A bromide ion and the O atom of a water mol­ecule occupy the remaining coordination sites. The N—Co—N bite angles are 82.18 (4) and 80.03 (16)°. The glyoximate moieties form strong intra­molecular O—H⋯O hydrogen bonds. The coordinated water mol­ecule forms an inter­molecular O—H⋯O hydrogen bond with a glyoximate O atom, thereby generating supra­molecular chains parallel to [010]

    RILEM TC 277-LHS REPORT: A review on the mechanisms of setting and hardening of lime-based binding systems

    Get PDF
    The main objective of RILEM TC LHS-277 “Specifications for testing and evaluation of lime-based repair materials for historic Structures” is the revision, adaption and, when necessary proposal, of the test methods to accurately study lime-based binding systems and mixtures, such as mortars and grouts. The empiric use of the lime-based composites and the predominant employ of cement in the field of Civil Engineering have led to the widespread application of test methods developed for cement-based composites to test the former. However, the clear differences in composition and performance between modern cement binders and lime-based materials would advise to explore specific test methods for the latter. To undertake this task the previous knowledge on the mechanisms of setting and hardening of these binders must be revised, arranged and synthesized. Processes such as drying, carbonation, hydration and pozzolanic reaction may occur during the setting and hardening of lime-based mortars and competition between them cannot be underestimated. With the aim of underpinning the revision and proposal of test methods for lime-based systems, this review paper reports a comprehensive study of the mechanisms of setting and hardening of these binders, considering the variability of the composition, which includes pure air lime as well as lime with hydraulic properties, lime-cement and lime-pozzolan systems.authorsversionpublishe

    Improving women’s diet quality pre-conceptionally and during gestation: effects on birth weight and prevalence of low birth weight; a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project)

    No full text
    BACKGROUND: Low birth weight (LBW) is an important public health problem in undernourished populations.OBJECTIVE: We tested whether improving women's dietary micronutrient quality before conception and throughout pregnancy increases birth weight in a high-risk Indian population.DESIGN: The study was a nonblinded, individually randomized controlled trial. The intervention was a daily snack made from green leafy vegetables, fruit, and milk (treatment group) or low-micronutrient vegetables (potato and onion) (control group) from ? 90 d before pregnancy until delivery in addition to the usual diet. Treatment snacks contained 0.69 MJ of energy (controls: 0.37 MJ) and 10-23% of WHO Reference Nutrient Intakes of ?-carotene, riboflavin, folate, vitamin B-12, calcium, and iron (controls: 0-7%). The primary outcome was birth weight.RESULTS: Of 6513 women randomly assigned, 2291 women became pregnant, 1962 women delivered live singleton newborns, and 1360 newborns were measured. In an intention-to-treat analysis, there was no overall increase in birth weight in the treatment group (+26 g; 95% CI: -15, 68 g; P = 0.22). There was an interaction (P &lt; 0.001) between the allocation group and maternal prepregnant body mass index (BMI; in kg/m(2)) [birth-weight effect: -23, +34, and +96 g in lowest (&lt;18.6), middle (18.6-21.8), and highest (&gt;21.8) thirds of BMI, respectively]. In 1094 newborns whose mothers started supplementation ? 90 d before pregnancy (per-protocol analysis), birth weight was higher in the treatment group (+48 g; 95% CI: 1, 96 g; P = 0.046). Again, the effect increased with maternal BMI (-8, +79, and +113 g; P-interaction = 0.001). There were similar results for LBW (intention-to-treat OR: 0.83; 95% CI: 0.66, 1.05; P = 0.10; per-protocol OR = 0.76; 95% CI: 0.59, 0.98; P = 0.03) but no effect on gestational age in either analysis.CONCLUSIONS: A daily snack providing additional green leafy vegetables, fruit, and milk before conception and throughout pregnancy had no overall effect on birth weight. Per-protocol and subgroup analyses indicated a possible increase in birth weight if the mother was supplemented ? 3 mo before conception and was not underweight. This trial was registered at www.controlled-trials.com/isrctn/ as ISRCTN62811278<br/

    Patterns of antibiotic use, pathogens, and prediction of mortality in hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort study (NeoOBS)

    Get PDF
    BACKGROUND: There is limited data on antibiotic treatment in hospitalized neonates in low- and middle-income countries (LMICs). We aimed to describe patterns of antibiotic use, pathogens, and clinical outcomes, and to develop a severity score predicting mortality in neonatal sepsis to inform future clinical trial design. METHODS AND FINDINGS: Hospitalized infants <60 days with clinical sepsis were enrolled during 2018 to 2020 by 19 sites in 11 countries (mainly Asia and Africa). Prospective daily observational data was collected on clinical signs, supportive care, antibiotic treatment, microbiology, and 28-day mortality. Two prediction models were developed for (1) 28-day mortality from baseline variables (baseline NeoSep Severity Score); and (2) daily risk of death on IV antibiotics from daily updated assessments (NeoSep Recovery Score). Multivariable Cox regression models included a randomly selected 85% of infants, with 15% for validation. A total of 3,204 infants were enrolled, with median birth weight of 2,500 g (IQR 1,400 to 3,000) and postnatal age of 5 days (IQR 1 to 15). 206 different empiric antibiotic combinations were started in 3,141 infants, which were structured into 5 groups based on the World Health Organization (WHO) AWaRe classification. Approximately 25.9% (n = 814) of infants started WHO first line regimens (Group 1-Access) and 13.8% (n = 432) started WHO second-line cephalosporins (cefotaxime/ceftriaxone) (Group 2-"Low" Watch). The largest group (34.0%, n = 1,068) started a regimen providing partial extended-spectrum beta-lactamase (ESBL)/pseudomonal coverage (piperacillin-tazobactam, ceftazidime, or fluoroquinolone-based) (Group 3-"Medium" Watch), 18.0% (n = 566) started a carbapenem (Group 4-"High" Watch), and 1.8% (n = 57) a Reserve antibiotic (Group 5, largely colistin-based), and 728/2,880 (25.3%) of initial regimens in Groups 1 to 4 were escalated, mainly to carbapenems, usually for clinical deterioration (n = 480; 65.9%). A total of 564/3,195 infants (17.7%) were blood culture pathogen positive, of whom 62.9% (n = 355) had a gram-negative organism, predominantly Klebsiella pneumoniae (n = 132) or Acinetobacter spp. (n = 72). Both were commonly resistant to WHO-recommended regimens and to carbapenems in 43 (32.6%) and 50 (71.4%) of cases, respectively. MRSA accounted for 33 (61.1%) of 54 Staphylococcus aureus isolates. Overall, 350/3,204 infants died (11.3%; 95% CI 10.2% to 12.5%), 17.7% if blood cultures were positive for pathogens (95% CI 14.7% to 21.1%, n = 99/564). A baseline NeoSep Severity Score had a C-index of 0.76 (0.69 to 0.82) in the validation sample, with mortality of 1.6% (3/189; 95% CI: 0.5% to 4.6%), 11.0% (27/245; 7.7% to 15.6%), and 27.3% (12/44; 16.3% to 41.8%) in low (score 0 to 4), medium (5 to 8), and high (9 to 16) risk groups, respectively, with similar performance across subgroups. A related NeoSep Recovery Score had an area under the receiver operating curve for predicting death the next day between 0.8 and 0.9 over the first week. There was significant variation in outcomes between sites and external validation would strengthen score applicability. CONCLUSION: Antibiotic regimens used in neonatal sepsis commonly diverge from WHO guidelines, and trials of novel empiric regimens are urgently needed in the context of increasing antimicrobial resistance (AMR). The baseline NeoSep Severity Score identifies high mortality risk criteria for trial entry, while the NeoSep Recovery Score can help guide decisions on regimen change. NeoOBS data informed the NeoSep1 antibiotic trial (ISRCTN48721236), which aims to identify novel first- and second-line empiric antibiotic regimens for neonatal sepsis. TRIAL REGISTRATION: ClinicalTrials.gov, (NCT03721302)

    Economic evaluation of shortened, bedaquiline-containing treatment regimens for rifampicin-resistant tuberculosis (STREAM stage 2) : a within-trial analysis of a randomised controlled trial

    Get PDF
    Background: The STREAM stage 2 trial assessed two bedaquiline-containing regimens for rifampicin-resistant tuberculosis: a 9-month all-oral regimen and a 6-month regimen containing an injectable drug for the first 2 months. We did a within-trial economic evaluation of these regimens. Methods: STREAM stage 2 was an international, phase 3, non-inferiority randomised trial in which participants with rifampicin-resistant tuberculosis were randomly assigned (1:2:2:2) to the 2011 WHO regimen (terminated early), a 9-month injectable-containing regimen (control regimen), a 9-month all-oral regimen with bedaquiline (oral regimen), or a 6-month regimen with bedaquiline and an injectable for the first 2 months (6-month regimen). We prospectively collected direct and indirect costs and health-related quality of life data from trial participants until week 76 of follow-up. Cost-effectiveness of the oral and 6-month regimens versus control was estimated in four countries (oral regimen) and two countries (6-month regimen), using health-related quality of life for cost-utility analysis and trial efficacy for cost-effectiveness analysis. This trial is registered with ISRCTN, ISRCTN18148631. Findings: 300 participants were included in the economic analyses (Ethiopia, 61; India, 142; Moldova, 51; Uganda, 46). In the cost-utility analysis, the oral regimen was not cost-effective in Ethiopia, India, Moldova, and Uganda from either a provider or societal perspective. In Moldova, the oral regimen was dominant from a societal perspective. In the cost-effectiveness analysis, the oral regimen was likely to be cost-effective from a provider perspective at willingness-to-pay thresholds per additional favourable outcome of more than US4500inEthiopia,4500 in Ethiopia, 1900 in India, 3950inMoldova,and3950 in Moldova, and 7900 in Uganda, and from a societal perspective at thresholds of more than 15900inEthiopia,15 900 in Ethiopia, 3150 in India, and 4350inUganda,whileinMoldovatheoralregimenwasdominant.InEthiopiaandIndia,the6monthregimenwouldcosttuberculosisprogrammesandparticipantslessthanthecontrolregimenandwashighlylikelytobecosteffectiveinbothcostutilityanalysisandcosteffectivenessanalysis.Reducingthebedaquilinepricefrom4350 in Uganda, while in Moldova the oral regimen was dominant. In Ethiopia and India, the 6-month regimen would cost tuberculosis programmes and participants less than the control regimen and was highly likely to be cost-effective in both cost-utility analysis and cost-effectiveness analysis. Reducing the bedaquiline price from 1·81 to $1·00 per tablet made the oral regimen cost-effective in the provider-perspective cost-utility analysis in India and Moldova and dominate over the control regimen in the provider-perspective cost-effectiveness analysis in India. Interpretation: At current costs, the oral bedaquiline-containing regimen for rifampicin-resistant tuberculosis is unlikely to be cost-effective in many low-income and middle-income countries. The 6-month regimen represents a cost-effective alternative if injectable use for 2 months is acceptable. Funding: USAID and Janssen Research & Development
    corecore