334 research outputs found
Comparison of Entrainment Rate in Acrylonitrile Reactors Using Plant Data and CFD Simulations
Accurate entrainment rates are important in fluidized bed reactors for several reasons, including determination of cyclone loadings and efficiencies, sizing of diplegs, and inputs to population balance models. Entrainment correlations exist in the literature and from other sources to predict entrainment rates from fluidized beds, but they can vary by orders of magnitude. In addition, many correlations do not take into account effects of internals which are present in many types of industrial reactors. A study was undertaken to better understand entrainment rates from Sohiotype acrylonitrile fluidized bed reactors containing catalyst classified as a Geldart type A powder. As part of this study, full scale CFD models were developed using the Barracuda® computational particle fluid dynamics (CPFD®) software and validated with the help of data collected from multiple plant reactors. These models compared two different sizes of industrial-scale reactors and included all major internals including cooling coils, cyclones, cyclone diplegs and gas spargers. Data on the pressure profile and actual entrainment rate to the cyclones generated by the Barracuda models were compared to the measured pressure data and derived entrainment rate in the plant reactors. The results showed good agreement. Additionally, evaluation of using the slip factor in the model to compare the particle volume fraction in the freeboard to the actual entrainment rate was done to determine if this technique could be used in the plant setting. The slip factor as calculated by Barracuda was between 1.55-1.95 which is similar to other values in the literature
Radiological Spectrum of von Hippel-Lindau disease – A Case Report
Von Hippel-Lindau (VHL) disease is an autosomal dominant genetic disorder resulting from inactivation of tumor suppressiongenes located at the chromosome 3p 25.5. VHL comprises of many benign and malignant tumors along affecting varioussystems of the body with variable manifestations. A wide variation in radiological spectrum is seen as per the involvement ofparticular system or organ. The imaging modalities like Ultrasonogrphy (USG), Computerized Tomography (CT) andMagnetic Resonance Imaging (MRI) play an important role in diagnosing and treating the affected individuals. These also playequally important role in the screening and follow up of such cases. We present a case of an 18 year old female, who wasdiagnosed with VHL at the age of 10 years, where imaging modalities helped her management and follow up
Serendipitous Discovery of Light-Induced \u3cem\u3e(In Situ)\u3c/em\u3e Formation of An Azo-Bridged Dimeric Sulfonated Naphthol as a Potent PTP1B Inhibito
Background Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results. Results Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5. Conclusion We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common mechanism of inhibitory action for these scaffolds
Protein Expression, Characterization and Activity Comparisons of Wild Type and Mutant DUSP5 Proteins
Background
The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results
In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function. We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion
Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies
Recommended from our members
Computational Modeling of Twin Screw Pumps for Thermal Management Applications
Electrification has become less of a catchphrase and increasingly commonplace when discussing today’s locomotives. Engineers developing thermal management strategies (both component suppliers and system-level analysts) must be armed with effective tools to design and analyze essential components such as coolant pumps and study their behavior in an actual system. This study focuses on the analysis of twin screw pumps for cooling battery packs in hybrid and battery electric vehicles via three different approaches – experimental measurements, a one-dimensional (1D) thermodynamic chamber model, and a three-dimensional (3D) computational fluid dynamics (CFD) model. Experimental measurements are conducted to quantify the coolant’s volume flow rate and the shaft power consumption over a range of operating speeds and pump discharge pressures. While these measurements provide some insight into the overall internal leakages and pumping efficiencies, more comprehensive tests at a higher cost are required to fully understand the detailed thermodynamic processes occurring within the pump. Two computational modeling approaches are presented and extensively validated against these measurements. The 1D chamber model demonstrates a good agreement of all measured quantities at a very low computational cost. It also provides useful information regarding the relative importance of the various leakage paths along with the working processes and pressure pulsations. This makes it an effective tool to quickly analyze operating conditions where test data may not be available and iterate towards improved designs via parametric analysis. 3D CFD yields very good agreement compared to the measured results and provides a more complete picture with greater spatial accuracy that is sacrificed in the 1D approach. However, this is available at a significantly higher computational cost. A combination of both methodologies can guide engineers in designing screw pumps for optimal performance
Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves
We present an analysis of high-precision pulsar timing data taken as part of
the North American Nanohertz Observatory for Gravitational waves (NANOGrav)
project. We have observed 17 pulsars for a span of roughly five years using the
Green Bank and Arecibo radio telescopes. We analyze these data using standard
pulsar timing models, with the addition of time-variable dispersion measure and
frequency-variable pulse shape terms. Sub-microsecond timing residuals are
obtained in nearly all cases, and the best root-mean-square timing residuals in
this set are ~30-50 ns. We present methods for analyzing post-fit timing
residuals for the presence of a gravitational wave signal with a specified
spectral shape. These optimally take into account the timing fluctuation power
removed by the model fit, and can be applied to either data from a single
pulsar, or to a set of pulsars to detect a correlated signal. We apply these
methods to our dataset to set an upper limit on the strength of the
nHz-frequency stochastic supermassive black hole gravitational wave background
of h_c (1 yr^-1) < 7x10^-15 (95%). This result is dominated by the timing of
the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.Comment: To be submitted to Ap
- …