3,657 research outputs found
Active elastic dimers: self-propulsion and current reversal on a featureless track
We present a Brownian inchworm model of a self-propelled elastic dimer in the
absence of an external potential. Nonequilibrium noise together with a
stretch-dependent damping form the propulsion mechanism. Our model connects
three key nonequilibrium features -- position-velocity correlations, a nonzero
mean internal force, and a drift velocity. Our analytical results, including
striking current reversals, compare very well with numerical simulations. The
model unifies the propulsion mechanisms of DNA helicases, polar rods on a
vibrated surface, crawling keratocytes and Myosin VI. We suggest experimental
realizations and tests of the model.Comment: 4 page
Design strategies for the creation of aperiodic nonchaotic attractors
Parametric modulation in nonlinear dynamical systems can give rise to
attractors on which the dynamics is aperiodic and nonchaotic, namely with
largest Lyapunov exponent being nonpositive. We describe a procedure for
creating such attractors by using random modulation or pseudo-random binary
sequences with arbitrarily long recurrence times. As a consequence the
attractors are geometrically fractal and the motion is aperiodic on
experimentally accessible timescales. A practical realization of such
attractors is demonstrated in an experiment using electronic circuits.Comment: 9 pages. CHAOS, In Press, (2009
Flow-induced currents in nanotubes: a Brownian dynamics approach
Motivated by recent experiments [Science {\bf 299}, 1042 (2003)] reporting
that carbon nanotubes immersed in a flowing fluid displayed an electric current
and voltage, we numerically study the behaviour of a collection of Brownian
particles in a channel, in the presence of a flow field applied on similar but
slower particles in a wide chamber in contact with the channel. For a suitable
range of shear rates, we find that the flow field induces a unidirectional
drift in the confined particles, and is stronger for narrower channels. The
average drift velocity initially rises with increasing shear rate, then shows
saturation for a while, thereafter starts decreasing, in qualitative agreement
with recent theoretical studies [Phys. Rev. B {\bf 70}, 205423 (2004)] based on
Brownian drag and ``loss of grip''. Interestingly, if the sign of the
interspecies interaction is reversed, the direction of the induced drift
remains the same, but the flow-rate at which loss of grip occurs is lower, and
the level of fluctuations is higher.Comment: 7 pages, 9 figure
Flow-induced voltage and current generation in carbon nanotubes
New experimental results, and a plausible theoretical understanding thereof,
are presented for the flow-induced currents and voltages observed in
single-walled carbon nanotube samples. In our experiments, the electrical
response was found to be strongly sublinear -- nearly logarithmic -- in the
flow speed over a wide range, and its direction could be controlled by an
electrochemical biasing of the nanotubes. These experimental findings are
inconsistent with the conventional idea of a streaming potential as the
efficient cause. Here we present a new, physically appealing, Langevin-equation
based treatment of the nanotube charge carriers, assumed to be moving under
coulombic forcing by the correlated ionic fluctuations, advected by the liquid
in flow. The resulting 'Doppler-shifted' force-force correlation, as seen by
the charge carriers drifting in the nanotube, is shown to give a strongly
sublinear response, broadly in agreement with experiments.Comment: 11 pages including 3 figures. To appear in Phys. Rev B (2004
Proposal For Supply Chain Concentration In The Traditional MBA Program
The purpose of this proposal is to develop and implement a concentration in Supply Chain Management in the existing traditional MBA program effective fall 2012. Houston is the hub for many multinational oil and energy companies, large healthcare systems, wholesale/retail businesses, engineering and construction companies, and is a major city along the transportation artery of NAFTA. The program is designed to provide SCM expertise to students in the existing traditional MBA program. The environment for this proposal is the School of Business at Texas Southern University, Houston, Texas 77004
Technological Change, Automation and Employment: A Short Review of Theory and Evidence
A selective survey of recent papers in the area of technological change, automation and employment is presented. The objective is to convey analytical ideas and the empirical evidence that have informed studies in this area of contemporary policy relevance. Automation occurs when a machine does work that might previously have been done by a person. How robots and automation affect the availability of jobs for labor force? There are very few emerging studies that address the issue with detailed data on robots usage and employment in different sectors of the economy. Based on our review of available studies and empirical evidence the following statements can be made: (1) Increasing automation and robots adoption do not seem to cause loss of employment in the aggregate (2) Low skilled workers in routine jobs are more likely to suffer job losses. (3) There will be demand for new types of skilled workers or new specializations within occupations. Prospective automation intensifies the degree of uncertainty in labor markets across countries
- …