439 research outputs found

    Neonatal seizures—diagnostic options and treatment recommendations

    Full text link
    Seizures in neonates should prompt rapid evaluation to verify the diagnosis, determine etiology, and initiate appropriate treatment. Neonatal seizure diagnosis requires EEG confirmation and clinical observation alone is insufficient. Although most neonatal seizures are related to acute brain injury, some neonates present early-onset structural or metabolic/genetic epilepsy. Video-EEG monitoring, the gold standard for neonatal seizure detection and quantification, is resource-intensive and often unavailable, with amplitude-integrated EEG offering a reasonable alternative in guiding treatment. Whereas new-generation antiseizure medication (ASM), such as levetiracetam, appear promising, particularly in terms of tolerability, older-generation ASM, such as phenobarbital and phenytoin, are yet to be replaced. Acute treatment should aim at stopping both electroclinical and electrographic-only seizures. In neonates with acute provoked seizures, ASM should be discontinued without tapering after 72 h of seizure freedom and before hospital discharge

    Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review

    Get PDF
    Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG

    Ketogene Ernährungstherapien: mehr als nur Lifestyle-Diät

    Get PDF
    Ketogene Ernährungsformen werden heutzutage gerne eingesetzt zum Abnehmen oder für den Muskelaufbau. Im medizinischen Bereich stellen sie jedoch eine evidenzbasierte, etablierte Behandlungsoption bei pädiatrischen Epilepsien und ausgewählten Stoffwechselerkrankungen dar

    A Spiking Neural Network (SNN) for detecting High Frequency Oscillations (HFOs) in the intraoperative ECoG

    Full text link
    To achieve seizure freedom, epilepsy surgery requires the complete resection of the epileptogenic brain tissue. In intraoperative ECoG recordings, high frequency oscillations (HFOs) generated by epileptogenic tissue can be used to tailor the resection margin. However, automatic detection of HFOs in real-time remains an open challenge. Here we present a spiking neural network (SNN) for automatic HFO detection that is optimally suited for neuromorphic hardware implementation. We trained the SNN to detect HFO signals measured from intraoperative ECoG on-line, using an independently labeled dataset. We targeted the detection of HFOs in the fast ripple frequency range (250-500 Hz) and compared the network results with the labeled HFO data. We endowed the SNN with a novel artifact rejection mechanism to suppress sharp transients and demonstrate its effectiveness on the ECoG dataset. The HFO rates (median 6.6 HFO/min in pre-resection recordings) detected by this SNN are comparable to those published in the dataset (58 min, 16 recordings). The postsurgical seizure outcome was "predicted" with 100% accuracy for all 8 patients. These results provide a further step towards the construction of a real-time portable battery-operated HFO detection system that can be used during epilepsy surgery to guide the resection of the epileptogenic zone.Comment: 11 pages, 3 figures, 2 tables. The results of this publication were obtained by simulating our hardware platform, built for online processing of biological signals. This hardware combines neural recording headstages with a multi-core neuromorphic processor arxiv.org/abs/2009.1124

    The impact of cultural and religious beliefs on the phenomenology of mental illness in light of the involuntary psychiatric commitment of an East Asian and a West African woman

    Get PDF
    Religious and cultural issues have become increasingly important in the field of psychiatry. We present two cases which demonstrate the impact of diverse religious beliefs and cultural background on the presentation of mental illness. Clinicians must remain vigilant for the early detection of culturally sanctioned idioms of mental disorders

    Cohesive mixed-mode damage model applied to the simulation of the mechanical behaviour of a repaired sandwich beam

    Get PDF
    The behaviour of a repaired sandwich beam loaded under four point bending is simulated using theABAQUS® software. Both overlap and scarf repair, suitable for sandwich structures, were simulatedconsidering two dimensional nonlinear material and geometrical analysis. Special developed interfacefinite elements including a trapezoidal cohesive mixed-mode damage model appropriate for ductileadhesives were used in order to simulate the adhesive layer. The proposed model is intended to replacethe continuum finite elements traditionally used to simulate the adhesive layer, thus reducing thecomputational effort necessary to obtain results. Double Cantilever Beam (DCB) and End NotchedFlexure (ENF) tests were used to obtain the cohesive laws of the adhesive in pure modes I and II,respectively. The fracture energies (JIc and JIIc) are obtained using a new data reduction scheme based oncrack equivalent concept allowing overcoming crack monitoring difficulties during propagation in thesefracture characterization tests. The remaining cohesive parameters (1,I, 1,II, 2,I, 2,II)are obtained usingan inverse method, which is based on the fitting of the numerical and experimental P- curves by a finetuning process. This procedure allows fixing the referred cohesive parameters to be used in the stressanalyses and strength predictions of repaired sandwiches. The numerical model allowed the simulation ofdamage initiation and growth. Geometric changes, such as patch overlap length and scarf angle wereconsidered in the analysis in order to assess their influence on the repair efficiency. Conclusions weredrawn about design guidelines of sandwich composite material repair

    Levetiracetam versus Phenobarbital for Neonatal Seizures: A Retrospective Cohort Study

    Get PDF
    BACKGROUND Although phenobarbital (PB) is commonly used as a first-line antiseizure medication (ASM) for neonatal seizures, in 2015 we chose to replace it with levetiracetam (LEV), a third-generation ASM. Here, we compared the safety and efficacy of LEV and PB as first-line ASM, considering the years before and after modifying our treatment protocol. METHODS We conducted a retrospective cohort study of 108 neonates with electroencephalography (EEG)-confirmed seizures treated with first-line LEV or PB in 2012 to 2020. RESULTS First-line ASM was LEV in 33 (31%) and PB in 75 (69%) neonates. The etiology included acute symptomatic seizures in 69% of cases (30% hypoxic-ischemic encephalopathy, 32% structural vascular, 6% infectious, otherwise metabolic) and neonatal epilepsy in 22% (5% structural due to brain malformation, 17% genetic). Forty-two of 108 (39%) neonates reached seizure freedom following first-line therapy. Treatment response did not vary by first-line ASM among all neonates, those with acute symptomatic seizures, or those with neonatal-onset epilepsy. Treatment response was lowest for neonates with a higher seizure frequency, particularly for those with status epilepticus versus rare seizures (P < 0.001), irrespective of gestational age, etiology, or EEG findings. Adverse events were noted in 22 neonates treated with PB and in only one treated with LEV (P < 0.001). CONCLUSIONS Our study suggests a potential noninferiority and a more acceptable safety profile for LEV, which may thus be a reasonable option as first-line ASM for neonatal seizures in place of PB. Treatment should be initiated as early as possible since higher seizure frequencies predispose to less favorable responses

    Scalp high-frequency oscillations differentiate neonates with seizures from healthy neonates

    Full text link
    OBJECTIVE We aimed to investigate (1) whether an automated detector can capture scalp high-frequency oscillations (HFO) in neonates and (2) whether scalp HFO rates can differentiate neonates with seizures from healthy neonates. METHODS We considered 20 neonates with EEG-confirmed seizures and four healthy neonates. We applied a previously validated automated HFO detector to determine scalp HFO rates in quiet sleep. RESULTS Etiology in neonates with seizures included hypoxic-ischemic encephalopathy in 11 cases, structural vascular lesions in 6, and genetic causes in 3. The HFO rates were significantly higher in neonates with seizures (0.098 ± 0.091 HFO/min) than in healthy neonates (0.038 ± 0.025 HFO/min; P = 0.02) with a Hedge's g value of 0.68 indicating a medium effect size. The HFO rate of 0.1 HFO/min/ch yielded the highest Youden index in discriminating neonates with seizures from healthy neonates. In neonates with seizures, etiology, status epilepticus, EEG background activity, and seizure patterns did not significantly impact HFO rates. SIGNIFICANCE Neonatal scalp HFO can be detected automatically and differentiate neonates with seizures from healthy neonates. Our observations have significant implications for neuromonitoring in neonates. This is the first step in establishing neonatal HFO as a biomarker for neonatal seizures

    Scalp HFO rates are higher for larger lesions

    Full text link
    High frequency oscillations (HFO) in scalp EEG are a new and promising non-invasive epilepsy biomarker, providing added prognostic value, particularly in pediatric lesional epilepsy. However, it is unclear if lesion characteristics, such as lesion volume, depth, type, and localization, impact scalp HFO rates. We analyzed scalp EEG from 13 children and adolescents with focal epilepsy associated with focal cortical dysplasia (FCD), low-grade tumors, or hippocampal sclerosis. We applied a validated automated detector to determine HFO rates in bipolar channels. We identified the lesion characteristics in MRI. Larger lesions defined by MRI volumetric analysis corresponded to higher cumulative scalp HFO rates (p=0.01) that were detectable in a higher number of channels (p=0.05). Both superficial and deep lesions generated HFO detectable in the scalp EEG. Lesion type (FCD vs. tumor) and lobar localization (temporal vs. extratemporal) did not affect scalp HFO rates in our study. Our observations support that all lesions may generate HFO detectable in scalp EEG, irrespective of their characteristics, whereas larger epileptogenic lesions generate higher scalp HFO rates over larger areas that are thus more accessible to detection. Our study provides crucial insight into scalp HFO detectability in pediatric lesional epilepsy, facilitating their implementation as an epilepsy biomarker in a clinical setting
    corecore