3,124 research outputs found

    A Simple Statistical Model for Analysis of QGP-droplet (Fireball) Formation

    Full text link
    We construct the density of states for quarks and gluons using the `Thomas - Fermi model' for atoms and the `Bethe model' for nucleons as templates. With parameters to take care of the plasma (hydrodynamical) features of the QGP with a thermal potential for the interaction, we find a window in the parametric space of the model where observable QGP droplets of ∼ \sim 5 fm radius can occur with transition temperature in the range 140 MeV to 250 MeV. By matching with the expectations of Lattice Gauge estimates of the QGP-hadron transitions, we can further narrow the window, thereby restricting the allowed values of the flow-parameters of the model.Comment: LaTex 11 pages, 8 figure

    Influence of analysis and design models on minimum weight design

    Get PDF
    The results of numerical experiments designed to illustrate how the minimum weight design, accuracy, and cost can be influenced by: (1) refinement of the finite element analysis model and associated load path problems, and (2) refinement of the design variable linking model are examined. The numerical experiments range from simple structures where the modelling decisions are relatively obvious and less costly to the more complex structures where such decisions are less obvious and more costly. All numerical experiments used employ the dual formulation in ACCESS-3 computer program. Guidelines are suggested for creating analysis and design models that predict a minimum weight structure with greater accuracy and less cost. These guidelines can be useful in an interactive optimization environment and in the design of heuristic rules for the development of knowledge-based expert optimization systems
    • …
    corecore