35 research outputs found

    Tracing the Sources of Cellular Variation

    Get PDF
    As the adage says, variety is the spice of life, and despite our best attempts, cells, even those with the same genome, never seem to behave the same. By combining mathematical and experimental analyses, Colman-Lerner and colleagues propose, in a recent issue of Nature, a method to delicately unravel the sources of this variation (Colman-Lerner et al., 2005). Applying their technique to the pheromone response in budding yeast, they show that much of the observed variation originates from cell cycle effects and is dependent on levels of pathway input

    Onset of Propagation of Planar Cracks in Heterogeneous Media

    Full text link
    The dynamics of planar crack fronts in hetergeneous media near the critical load for onset of crack motion are investigated both analytically and by numerical simulations. Elasticity of the solid leads to long range stress transfer along the crack front which is non-monotonic in time due to the elastic waves in the medium. In the quasistatic limit with instantaneous stress transfer, the crack front exhibits dynamic critical phenomenon, with a second order like transition from a pinned to a moving phase as the applied load is increased through a critical value. At criticality, the crack-front is self-affine, with a roughness exponent ζ=0.34±0.02\zeta =0.34\pm 0.02. The dynamic exponent zz is found to be equal to 0.74±0.03 0.74\pm 0.03 and the correlation length exponent ν=1.52±0.02\nu =1.52\pm 0.02. These results are in good agreement with those obtained from an epsilon expansion. Sound-travel time delays in the stress transfer do not change the static exponents but the dynamic exponent zz becomes exactly one. Real elastic waves, however, lead to overshoots in the stresses above their eventual static value when one part of the crack front moves forward. Simplified models of these stress overshoots are used to show that overshoots are relevant at the depinning transition leading to a decrease in the critical load and an apparent jump in the velocity of the crack front directly to a non-zero value. In finite systems, the velocity also shows hysteretic behaviour as a function of the loading. These results suggest a first order like transition. Possible implications for real tensile cracks are discussed.Comment: 51 pages + 20 figur

    Pluripotency Factors in Embryonic Stem Cells Regulate Differentiation into Germ Layers

    Get PDF
    Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells

    Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media

    Full text link
    The dynamics of tensile crack fronts restricted to advance in a plane are studied. In an ideal linear elastic medium, a propagating mode along the crack front with a velocity slightly less than the Rayleigh wave velocity, is found to exist. But the dependence of the effective fracture toughness Γ(v)\Gamma(v) on the crack velocity is shown to destabilize the crack front if (dΓ)/(dv)<0(d\Gamma)/(dv)<0. Short wavelength radiation due to weak random heterogeneities leads to this instability at low velocities. The implications of these results for the crack dynamics are discussed.Comment: 12 page

    Statistics of Earthquakes in Simple Models of Heterogeneous Faults

    Full text link
    Simple models for ruptures along a heterogeneous earthquake fault zone are studied, focussing on the interplay between the roles of disorder and dynamical effects. A class of models are found to operate naturally at a critical point whose properties yield power law scaling of earthquake statistics. Various dynamical effects can change the behavior to a distribution of small events combined with characteristic system size events. The studies employ various analytic methods as well as simulations.Comment: 4 pages, RevTex, 3 figures (eps-files), uses eps
    corecore