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Abstract The complexity of gene regulatory networks that lead multipotent cells to acquire

different cell fates makes a quantitative understanding of differentiation challenging. Using a

statistical framework to analyze single-cell transcriptomics data, we infer the gene expression

dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions

across nine cell states. We validate the predicted transitions across discrete states using flow

cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt

transitions from a naı̈ve to primed pluripotent state. Using the inferred discrete cell states to build

a probabilistic model for the underlying gene regulatory network, we further predict and

experimentally verify that these states have unique response to perturbations, thus defining them

functionally. Our study provides a framework to infer the dynamics of differentiation from single

cell transcriptomics data and to build predictive models of the gene regulatory networks that drive

the sequence of cell fate decisions during development.

DOI: 10.7554/eLife.20487.001

Introduction
During differentiation, cells repeatedly choose between alternative fates in order to give rise to a

multitude of distinct cell types. A major challenge in developmental biology is to uncover the

dynamics of gene expression and the underlying gene regulatory networks that lead cells to their

different fates. Given the complexity of gene regulatory networks, with their large number of com-

ponents and even larger number of potential interactions between those components, building

detailed predictive mathematical models is challenging. The lack of sufficient data requires a large

number of assumptions to be made in order to constrain all the parameters in such models

(Karr et al., 2012).

Our accompanying work on extracting cell states and the sequence of cell state transitions from

gene expression data (Furchtgott et al., 2016) suggested that following the dynamics of a key set

of genes was sufficient to trace these transitions, and in several instances the set of key genes that

we discovered were also functionally important for lineage decisions. We asked whether we could

similarly determine the suitable parameters to quantitatively describe cell state transitions during
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early mammalian germ layer development and build predictive mathematical models of the underly-

ing regulatory network.

Early differentiation of pluripotent mouse embryonic stem (mES) cells, which are derived from the

inner cell mass of the peri-implantation stage embryo (see pictorial summary in Figure 1—figure

supplement 1A), recapitulate various aspects of in vivo germ layer differentiation (Evans and Kauf-

man, 1981; Keller, 2005). During this stage, both mES cells and cells in vivo express key pluripo-

tency factors, such as Nanog, Sox2, Oct4, Klf4, Jarid2, and Esrrb, which mutually activate one

another to form a pluripotency circuit (Kim et al., 2008; Young, 2011; Zhou et al., 2007). Following

implantation, naı̈ve pluripotent ES cells of the inner cell mass downregulate Klf4 and upregulate

Otx2, Dnmt3a, and Dnmt3b, as they transition into ‘primed’ pluripotent cells found in the epiblast

(Buecker et al., 2014; Nichols and Smith, 2009). Over the next few days of differentiation, TGF-

beta signaling factors, with the aid of WNT/beta-catenin signaling, promote and inhibit the differen-

tiation of pluripotent cells into mesendodermal (characterized by genes such as Brachyury (T),

FoxA2, Mixl1 and Gsc) and ectodermal (characterized by Eras, Sez6, Stmn3, and Stmn4) cell fates,

respectively (Gadue et al., 2006; Hart et al., 2002; Li et al., 2015; Lindsley et al., 2006;

Tada et al., 2005; Watabe and Miyazono, 2009). Mesendodermal progenitors further differentiate

into mesoderm and definitive endoderm progenitors. Mesoderm cells are usually distinguished by

the expression of Gata4 and Eomes, and endoderm cells by Sox17 and FoxA2, although in mouse

these genes are shared between both lineages, with differences only in their timing and level of

expression (Arnold and Robertson, 2009; Kanai-Azuma et al., 2002; Kim and Ong, 2012;

Lumelsky et al., 2001; Rojas et al., 2005). Along the ectodermal lineage, BMP signaling pushes

ectodermal cells toward epidermis, while in the absence of BMP signaling, ectodermal cells acquire

a neural fate (Wilson and Hemmati-Brivanlou, 1995). Epidermal cells are characterized by Keratins,

whereas neural cells express Sox1 and Pax6 (Koch and Roop, 2004; Pevny et al., 1998;

Sansom et al., 2009; Streit and Stern, 1999). The cells at the physical border between epidermal

and neural cells give rise to neural crest cells (expressing Sox10, Msx2, Snai1 and Slug) in response

to WNT and BMP signaling, which are often described as a fourth germ layer because of the diverse

range of tissues to which they give rise (Gans and Northcutt, 1983; Knecht and Bronner-Fraser,

2002; Le Douarin, 1991). Despite the detailed understanding of early embryonic development

revealed by decades of work in genetics and developmental biology, a quantitative understanding

of how the underlying gene regulatory network leads cells through a series of cell fate decisions has

remained elusive.

We use single-cell RNA-seq to determine how gene expression patterns change as mouse embry-

onic stem cells differentiate into different germ-layer progenitors. We employ a Bayesian framework

(Furchtgott et al., 2016) to simultaneously infer cell states, the sequence of transitions between

these states, and the key sets of genes whose expression patterns provide a parameter space in

which the cell states and cell state transitions are inferred. Our computational analysis, together with

experimental validation using flow cytometry and live-cell imaging of a new Otx2 reporter mES cell

line, suggest that cells reside in discrete states and rapidly transition from one state to another.

Using the inferred gene expression dynamics and by requiring models to replicate the existence

of the observed discrete cell states, we extract probability distributions of the parameters of a model

gene regulatory network. Intriguingly, requiring the model to have discrete cell states leads to the

prediction that each cell state has a distinct response to perturbations by signals and changing tran-

scription factor expression levels. We experimentally verify three distinct categories of predictions,

each testing whether cells exhibit such state-dependent behavior in response to a different type of

perturbation. The experimental results conclude that whether (i) Sox2 overexpression represses

Oct4, (ii) Snai1 overexpression represses Oct4, and (iii) LIF and BMP promote pluripotency or differ-

entiation into neural crest, all depend on cell state. Finally, we discuss the biological implications of

our results.

Results

Acquiring single-cell transcriptomics data during early differentiation
We differentiated populations of mES cells by exposing them to one of four combinations of signal-

ing factors and small molecules to perturb key paracrine signaling pathways involved in early
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mammalian patterning (Power and Tam, 1993; Tam et al., 2006): FGF, WNT, and/or TGF-beta sig-

naling for up to five days (Figure 1A; see also Figure 1—figure supplement 1B, Materials and

methods). Although cells in each population were differentiated in a monolayer culture and there-

fore exposed to nearly uniform conditions, we observed significant heterogeneity in the expression

– as measured by immunofluorescence – of various known early germ layer marker genes (such as T,

Pax6, Slug, FoxA2, and Gata4) in each population, suggesting a diversity of cell types under the

same signaling conditions (Figure 1B). Further, undifferentiated pluripotent cells persisted in differ-

entiating populations (Figure 1—source data 1, Figure 2—source data 1). Therefore, to capture

the cell-to-cell variability within differentiating populations, we collected and transcriptionally pro-

filed single cells every 24 hr over the course of five days of differentiation (Figure 1—source data 1)

using a modified version of CEL-seq (Hashimshony et al., 2012). We obtained gene expression data

from a total of 288 cells (Figure 1—figure supplement 1C–J; Materials and methods) with a median

FGF , 
WNT ,
BMP,

Activin 

mES cells

Sample at
24 hr. intervals

over 5 days.

A

B
Msx2/Otx2/Slug

Sox2/FoxA2/T

Gata4/FoxA2/T

Sox1/Pax6/Oct4

Figure 1. Single-Cell Gene Expression Profiling of mESCs during early germ layer differentiation. (A) Mouse

embryonic stem cells (mESCs) were exposed to various differentiation conditions to perturb FGF, WNT, and TGF-

beta signaling for up to five days of differentiation. Single cells, collected every 24 hr during differentiation, were

transcriptionally profiled using CEL-Seq. (See also Figure 1—figure supplement 1B and Figure 1—source data

1). (B) Images of immunostained mESCs undergoing differentiation show cell-to-cell variability in their expression

of known germ layer marker genes. (Scale bar = 100 mm).

DOI: 10.7554/eLife.20487.002

The following source data and figure supplement are available for figure 1:

Source data 1. Differentiation conditions and duration of single cells sorted into seven 96-well plates.

DOI: 10.7554/eLife.20487.003

Figure supplement 1. Quality validation of single-cell RNA-seq data.

DOI: 10.7554/eLife.20487.004
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of 508,939 mapped reads, 48,475 transcripts and 7032 genes detected per cell. We then randomly

subsampled 20,000 reads from each cell to eliminate any technical biases that may have resulted

from differences in read numbers across cells (Figure 1—figure supplement 1K).

Bayesian statistical approach discovers appropriate coordinate systems
to infer cell states and state transitions
One of the challenges in analyzing single-cell gene expression data is the high dimensionality of the

data set and the concomitant sparsity of the data (the number of data points divided by the

dimensionality is small) (Advani and Ganguli, 2016). Conventional analysis of single-cell gene

expression data relies on multi-gene or multi-cell correlation estimates, such as PCA (Seurat)

(Satija et al., 2015), ICA (Monocle) (Trapnell et al., 2014) and WGCNA (Li et al., 2016;

Saadatpour et al., 2014) to reduce the dimensionality of expression data. However, discovering cell

types and their lineage relationships using these methods has been challenging (Furchtgott et al.,

2016).

In the accompanying paper, Furchtgott et al. develop a Bayesian framework that simultaneously

infers (i) cell cluster identities of the cells, Cf g � c1; c2; . . . ; cNf g,, (ii) the sets of transitions Tf g

between these clusters, (iii) the key sets of marker genes aif g that define each cell cluster and (iv)

the sets of transition genes bif g that define the transitions between clusters, from single-cell gene

expression data gif g, by means of an iterative algorithm to determine the maximum likelihood esti-

mates of these variables (Furchtgott et al., 2016).

Here, we employed this Bayesian framework to discover cell types and infer their lineage relation-

ships for early mouse germ layer differentiation. We started by clustering the single-cell gene

expression data for the 288 cells into 12 seed clusters c0
1
; c0

2
; . . . ; c0

12

� 	

using Seurat (Satija et al.,

2015) as well as k-means (Figure 2—figure supplement 2A, B and C), restricting the analysis to

transcription factors (2672 total) because of their functional role in orchestrating global gene expres-

sion (Spitz and Furlong, 2012). Seurat identifies cell clusters by performing density-based clustering

on a two dimensional t-distributed Stochastic Neighbor Embedding (t-SNE) map of the gene expres-

sion data (Van der Maaten and Hinton, 2008). These clusters Cf g0¼ c0
1
; c0

2
; . . . ; c0

12

� 	

, ranging in size

from 14 to 47 single cells, served as a seed for the iterative algorithm (described below).

We next considered every possible group of 3 clusters (e.g., c0
1
; c0

2
and c0

3
) from a total of 12C3 ¼

220 such combinations. For each triplet of clusters, we first determined the probability that each

gene i was a marker gene (ai ¼ 1), a transition gene (bi ¼ 1) or neither (ai;bi ¼ 0) based on the distri-

bution of their expression patterns in cells of each cluster, where gif g is the single-cell gene expres-

sion data of the i�th gene. Marker and transition genes are defined as follows (Figure 2—figure

supplement 1A, Materials and methods,; Furchtgott et al., 2016): (i) A marker gene i ai ¼ 1ð Þ has a

distribution of expression levels that is highest in one cluster, and well separated from the distribu-

tion of its expression levels in the other two clusters. Marker genes distinguish one of the clusters

from the other two. (ii) A transition gene j bj ¼ 1
� �

has a distribution of expression levels that is low-

est in one cluster, and well separated from the distribution of its expression levels in the other two

clusters. Each such transition gene establishes relative relationships between the three clusters

(Furchtgott et al., 2016). (iii) Genes that are neither marker (a ¼ 0) nor transition genes (b ¼ 0) do

not follow constraints (i) and (ii) on expression level distributions. Computing the probability of each

gene being a marker gene, a transition gene, or neither allowed us to determine the most likely set

of transitions T between each triplet of clusters. Each gene’s contribution to the posterior probabil-

ity T is weighted by the odds ratio that the gene is a transition gene (Figure 2—figure supplement

1B). For example, for clusters c0
1
; c0

2
and c0

3
, a gene whose expression is lower in c0

2
casts a vote

against c0
2
being the intermediate state (i.e., against the transition T ¼ c0

2
, where c0

2
is intermediate,

Figure 2—figure supplement 1B right) that is weighted by its odds of being a transition gene for

those three clusters (Figure 2—figure supplement 1B, left). This Bayesian framework led to a sum-

mation of these weighted votes to determine the most likely set of transitions between each set of

three clusters and concomitantly the most likely marker and transition genes corresponding to these

clusters and transitions (Figure 2—figure supplement 1B, right).

For the seed cluster set Cf g0, we determined 179 sets of transitions between clusters and identi-

fied 1035 transcription factors that were high probability marker or transition genes for at least one

of the identified transitions. For a gene to be defined as a marker or transition gene, we used a
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probability cutoff of 0.5. Moreover, we used a probability cutoff of 0.6 for a triplet of clusters to

count as a transition event. We next re-clustered the single cells in the gene expression space

defined by these 1035 marker or transition genes using Seurat, to obtain a new cluster set

Cf g1¼ c0
1
; c0

2
; . . . ; c0

10

� 	

consisting of 10 clusters. In this process, cells changed cluster identities, and

certain clusters merged (Figure 2A, Figure 2—figure supplement 1C).

By iteratively determining the most likely sets of transitions and the most likely marker and transi-

tion genes, and by re-clustering the cells within the subspace of these genes, the algorithm con-

verged (i.e., the number of genes of the re-clustering subspace became less than 10% of the total

number of transcription factors) upon the most likely set of cell clusters (Figure 2—source data 1),

the sets of transitions between these cell clusters (Figure 2—source data 2), as well as a set of 889

genes categorized as marker or transition genes for at least one set of transitions after five iterations

(Figure 2A; Figure 2—figure supplement 2D).

The final cluster set consists of 9 cell clusters ranging in size between 14 and 57 cells; every cell

was mapped to a cluster, and we observed mixing of cells from different experimental conditions to

the same cluster as well as cells from the same experimental conditions being assigned to different

clusters (Figure 1—source data 1; Figure 2—source data 1; Figure 3—figure supplement 1A). We

combined the local sets of transitions between different triplets of clusters (Figure 2—source data

2) in order to infer the most parsimonious lineage tree between the clusters (Figure 2A)

(Furchtgott et al., 2016). Importantly, we obtained identical final clusters starting with different

seed cluster sets using k-means clustering with the gap statistic, as well as with different threshold

probability parameter values for defining transition and marker genes, showing that our results were

robust to the choice of seed clusters, threshold probability value and clustering method (Figure 2—

figure supplement 2A, B and C; Figure 2—figure supplement 3A and B; Materials and methods).

The cluster identities as well as their lineage relationships were unchanged when the analysis was

repeated with a subset of cells; in which either an entire cluster was removed or a random set of half

(144) cells were removed (Figure 2—figure supplement 3C and D). Further, we found that the clus-

tering configuration does not change depending on whether the analysis is restricted to only tran-

scription factors or includes all genes (Figure 2—figure supplement 3E). However, using all genes

resulted in greater error rates along the topology of the inferred lineage tree compared to when

only transcription factors were used (Furchtgott et al., 2016; Figure 2—figure supplement 3F).

The inferred lineage relationships between the final clusters could be visualized in the subspace

of inferred marker and transition genes. We illustrate this first for the three clusters C1, C2, and C3.

We identified three classes of marker genes, each consisting of high-probability marker genes spe-

cific to one of the three clusters (Figure 2B). Each gene class is denoted by its highest probability

member gene in curly brackets (e.g., {Otx2}). When the cell-cell Pearson correlation matrix between

all 288 cells was determined using the 889 genes used for the final iteration of clustering and lineage

determination, the matrix showed a barely detectable structure of nine blocks (with very low con-

trast) along the diagonal with marginally higher correlation levels, each corresponding to a cell clus-

ter (Figure 2D). As expected, the low level of contrast observed in Figure 2D improves dramatically

when the same correlation measures are taken across cells in a triplet, using marker or transition

genes for this triplet; illustrating the locally defined nature of marker and transition genes

(Figure 2B, right; Figure 2C, right; Figure 2—figure supplement 2E). The same matrix computed

using high-probability marker genes for clusters C1, C2, and C3 (Figure 2B, left) showed three dis-

tinct blocks of high correlation along the diagonal, each corresponding to a different cluster

(Figure 2B, right). Similarly, when the cell-cell correlations were measured using the two classes of

inferred transition genes (Figure 2C, left), each consisting of high-probability transition genes pres-

ent in C1 and downregulated either in C2 or in C3, the correlation matrix showed intermediate corre-

lation levels between C1 and either C2 or C3, and low correlation levels between C2 and C3

(Figure 2C, right). The distribution functions of the expression levels of these transition genes in

each of the three different clusters (C1, C2 and C3) led to the inference that clusters C2 and C3 are

connected via cluster C1 with a probability of 0.83 (Figure 2E, Figure 2—figure supplement 1A

and B).

We visualized the gene expression changes that characterize transitions from one cell cluster to

another by plotting the cells in C1, C2 and C3 in a three-dimensional gene expression subspace

(Figure 2E), using as axes the mean normalized expression levels of the two transition gene classes
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Figure 2. Iterative Bayesian algorithm converges upon a set of cell clusters and local transitions that together define a multi-potent lineage tree. (A)

Iterative determination of the most likely sets of transitions Tf g and re-clustering of cells in the resulting subspace of transition and marker genes,

starting from a seed set of cluster identities Cf g0. With each iteration, the cluster identities as well as the total number of clusters change, as shown by

the Seurat t-SNE maps (each dot represents a cell, colored based on its cluster identity). The inferred sets of transitions between clusters at each

Figure 2 continued on next page
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down-regulated in C2 or C3 (in red and green in Figure 2C) and of the marker gene class specific to

C1 (Figure 2B in orange). These axes constitute a low-dimensional coordinate system for the inferred

set of transitions between C1, C2 and C3.

Similarly, the inferred transitions across all sets of three clusters (Figure 2—source data 2)

together form a lineage tree (Figure 3A) that spans all nine identified cell clusters, which can be visu-

alized in gene expression space through a series of local transition and marker gene classes

(Figure 3C; Figure 3—source data 1). We next investigated the gene expression variability among

cells within each cluster by performing principal component analysis (PCA) on the transcription factor

gene expression for cells within each cluster. Importantly, we found that for all clusters, no principal

component is statistically significant (compared to randomizations of the data; Figure 3B, Figure 3—

figure supplement 1B), validating that within each inferred cluster, the cells have the same identity

within the resolution of our data.

The inferred dynamics of differentiation can therefore be visualized in a low-dimensional subspace

of gene expression, showing that differentiation occurs through a sequence of discrete cell state

transitions.

Correspondence of cell states discovered ab initio from single-cell data
to known in vivo cell types
Inspection of the genes that make up the local transition and marker gene classes (Figure 3C; Fig-

ure 3—source data 1) allowed us to match clusters to embryonic cell types found in vivo that show

similar gene expression.

Cluster C0 is characterized by the high expression of pluripotency genes Oct4, Sox2, Sall1, Etv5,

Jarid2, Esrrb, Klf4 and Klf5, whereas cluster C1 has lower Jarid2, Esrrb, Klf4 and Klf5, and higher

Otx2, Bptf, Cbx1 and Dnmt3a/b expression compared to cluster C0, suggesting that clusters C0 and

C1 correspond to naı̈ve ES and primed epiblast pluripotent cell types, respectively (Borgel et al.,

2010; Goller et al., 2008; Kim et al., 2001; Nichols and Smith, 2009; Tesar et al., 2007;

Zhou et al., 2007).

Clusters C2 and C3, which branch out from C1, show differential expression of pluripotency genes

relative to C1; Bptf and Cbx1 are downregulated in both C2 and C3, Oct4, Etv5 and Dnmt3a are

Figure 2 continued

iteration are represented as a lineage tree (each circle represents a cell cluster). After five iterations, the algorithm converged upon a set of 9 clusters

(shown in box). (See also Figure 2—figure supplement 2). (B) Left: Top ten genes (x-axis) with highest probability of being marker genes for clusters C1

(yellow), C2 (light red) and C3 (light green) plotted against their probability of being marker genes. Right: Cell-cell correlation matrix computed using

these 30 marker genes for the 108 cells belonging to clusters C1, C2 and C3 shows three clear blocks of high correlation along the diagonal. (C) Left:

Top ten genes (x-axis) with highest probability of being transitioned genes for clusters C1, C2 and C3, plotted against their probability of being

transitioned genes (y-axis). The transition genes belong to one of two classes, those that show high expression in cells belonging to C1 and C2 but low

expression in C3 (red), and those expressed at high levels in cells in clusters C1 and C3 but low levels in C2 (green). The cell-cell correlation matrix

computed using these 20 transition genes shows that the 29 cells belonging to cluster C1have intermediate levels of correlation with cells in both C2

and C3, whereas the 46 cells in C2 show low correlation levels with the 33 cells in C3. (D) The global cell-cell correlation matrix computed for all 288 cells

using the 889 genes used for the final iteration of clustering shows a barely detectable structure. (E) The inferred clusters and their lineage relationships

can be represented in a three-dimensional coordinate system where the x- and y- axes are the normalized log expression level of the two classes of

transition genes (genes in Figure 2B, left) and the z-axis measures the normalized log expression level of the marker genes for cluster C1 (Figure 2A

left in yellow). Each dot represents a single cell, and cells are colored based on their cluster identity.

DOI: 10.7554/eLife.20487.005

The following source data and figure supplements are available for figure 2:

Source data 1. Plate and well id’s of cells belonging to each cluster.

DOI: 10.7554/eLife.20487.006

Source data 2. Triplet probabilities of final tree.

DOI: 10.7554/eLife.20487.007

Figure supplement 1. Diagram of Bayesian framework for inferring sequence of transitions for triplets.

DOI: 10.7554/eLife.20487.008

Figure supplement 2. Iterative clustering and lineage determination is robust to clustering method.

DOI: 10.7554/eLife.20487.009

Figure supplement 3. Iterative clustering and lineage determination is robust to changes in parameters.

DOI: 10.7554/eLife.20487.010

Jang et al. eLife 2017;6:e20487. DOI: 10.7554/eLife.20487 7 of 27

Research article Computational and Systems Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.20487.005
http://dx.doi.org/10.7554/eLife.20487.006
http://dx.doi.org/10.7554/eLife.20487.007
http://dx.doi.org/10.7554/eLife.20487.008
http://dx.doi.org/10.7554/eLife.20487.009
http://dx.doi.org/10.7554/eLife.20487.010
http://dx.doi.org/10.7554/eLife.20487


0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

time [hr]

O
tx

2
 [f

o
ld

 c
h

an
g

e
]

0

1

 gonaN

2

3

4

1 5 10 15 20 25

0 8 16 24 32 40 48
10

10
0

10
1

10
2

C
e

ll 
co

u
n

ts

-1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

{Klf4} Klf5, Jarid2, Esrrb, Eed

{Otx2} Bptf, Cbx1, Dnmt3b, Dnmt3a

{Etv5} Oct4, Tcea3, Utf1, Dnmt3a

(1)

(1)

{Otx2} (2) Crip2, Rbpj, Sox2, Dnmt3b

{Rhox5} Tet1, Hes6, Ptma, Srrm1

{Pax6} Smarce1, Lin28b, Phc1, Phb

{Atf2} Lsm14a, Puf60, Polr2e, Polr2f

{Tead1} Lin28a, Stmn4, Fblim1

{Sall4}

{Cited2}

Stag1, Taf7, Tle4, Zfp266

Ctnnb1, Notch2, Dek, Tcf3

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.81

1
0.8
0.6
0.4
0.2

0

A B C

E

FD

{Kdm5c} Ets2, Pbrm1, Fus, Rad51ap1

{Crip2} Olig1, Utf1, Oct4, Hmgcs1

{Pml} Pfdn1, Rrn3, Foxo4, Dek

1

0

1

0
1

0.2
0.4
0.6
0.8

0.2
0.4

0.6
0.8 0.8

0.6
0.4

0.2
0

(ES)

(Epi)

{Msx2} Slug, Lbr, Fhl1, Mtpn, Paxbp1

Tfap2c, Smarcc1, Wbp5, Rbbp7{Baz1a}

{Snai1} Gata4, Tbx6, Hmga2, Cited1

{Foxa2} Zbtb10, Pcna, Keap1, Ciao1

(bi_Ec)

(ME1)

{Snai1}
{Foxa2}

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0 1 0 1

0 1 0 1

1

0

1

0

lo
g

(K
lf

4
)

lo
g

(S
o

x2
)

lo
g

(G
at

a4
)

lo
g

(P
ax

6
)

lo
g

(T
)

log(Otx2)

log(Oct4)

log(Slug)

log(FoxA2)

log(FoxA2)

day 0 day 2

day 3

day 4

day 5

t = 0h t = 6h t = 12h

t = 18h t = 24h Nanog / Otx2

0.8
0.6

0.4
0.2

00
0.2

0.4
0.6

0.8 {Baz1a}

{Msx2}

1
0

0.2
0.4
0.6
0.8

1

1

(Epi)

(ME1)

(ME2)

(ME2)

Markers for Terminal Cell Types

0C

1C

1C

3C

3C

2C
2C

4C

4C

5C

6C 7C
8C

0C

0C

0C

0C

0C

1C

1C

1C

1C

1C

1,3C

1,2C

1,2C 1,2C

1,3C

1C

4C

4C2C

4,8C

5C 5C

7C 7C

6C
6C

4,8C

 N
o

rm
[l

o
g

{K
lf

4
}]

Norm[log{Kdm5c}] Norm
[lo

g{Crip
2}]

 N
o

rm
[l

o
g

{P
m

l}
]

Norm
[lo

g{Etv5}]Norm[log{Otx2}   ]

 N
o

rm
[l

o
g

{R
h

o
x5

}]
 N

o
rm

[l
o

g
{T

e
ad

1
}]

Norm[log{Pax6}] Norm
[lo

g{Atf2
}]

(NE)

(NC) (M) (DE)

(bi_Ec)

Norm[log{Otx2}    ]

(2) Norm[log{Cited2}]

 N
o

rm
[l

o
g

{S
al

l4
}]

maxmin

C0 residence duration [hr]

transition duration

20

30

40

50

PC number
1 2 3 4 5 6 7 8 9 10

V
ar

ia
n

ce

10

C
0

C
1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
  N

o
rm

al
iz

e
d

 
P

C
 1

 v
ar

ia
n

ce

0

0.2

0.4

0.6

0.8

1

0C

1C2,4C

3,5,6C

Figure 3. Cells transition from one discrete state to another during differentiation. (A) Computationally inferred cell clusters and sequence of transitions

are shown in the appropriate subspace of gene expression. Each dot represents a single cell, and cells are colored based on their cluster identity. For a

linear transition sequence of cell states (such as from C0 to C1), the transitions are represented in a two dimensional plot with the axes defined by the

normalized mean log of the unique reads of genes that are most differentially regulated in the two states, while for lineage bifurcations between

Figure 3 continued on next page
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downregulated in cluster C3 but maintained in C2, and Sox2, Otx2 and Dnmt3b are downregulated

in cluster C2 but maintained in cluster C3. Cluster C2 is further characterized by a high expression

level of primitive streak markers Mixl1 and T (Hart et al., 2002; Tada et al., 2005), whereas cluster

C3 is characterized by Sez6, Stmn3 and Stmn4, which have recently been shown to characterize the

previously elusive mammalian bi-potent ectoderm progenitor population (Li et al., 2015). Together,

these patterns strongly suggest that clusters C2 and C3 represent mesendoderm and bi-potent ecto-

derm progenitor cell types, respectively.

The bi-potent ectoderm progenitor-like cluster C3 is then followed by a lineage split into clusters

C5 and C6. While Stmn4 is downregulated in both C5 and C6 compared to C3, Sez6 is downregulated

in only C5, and Stmn3 as well as neural progenitor marker Pax6 are downregulated in C6 but main-

tained in C5. Cluster C5 is further characterized by Smarce1 and Zic2, and cluster C6 by Slug and

Msx2, suggesting that C5 and C6 may be related to neural progenitor and neural crest cells, respec-

tively (Brown and Brown, 2009; Le Douarin, 1991; Vogel-Ciernia and Wood, 2014).

Cluster C4, although similar in its expression level of Mixl1 and T to cluster C2, shows higher

expression of other primitive streak genes such as FoxA2 and Tcf3 (Merrill et al., 2004) and lower

expression of Etv5. Cluster C4 is then followed by a bifurcation between clusters C7 and C8. Cluster

C7 shows high expression levels of Gata4 and Snai1, indicative of its relation to mesoderm, and clus-

ter C8 is characterized by high FoxA2 compared to clusters C4 and C8, suggestive of its relation to

definitive endoderm (Kim and Ong, 2012; Rojas et al., 2005). We predict that cluster C4 represents

a primed bi-potent mesendoderm cell type relative to cluster C2 (Nakanishi et al., 2009).

Together, these results suggest that the cell clusters and sets of transitions computationally

inferred from single-cell transcriptomics data correspond to known in vivo cell types and their line-

age relationships.

Figure 3 continued

alternative daughter cell states, the plots are shown in three dimensions, where the x and y axes are normalized mean log unique reads of the

associated set of transition genes, and the z axes are the normalized mean log unique reads of the marker genes associated with the inferred

progenitor state. Labeled in parenthesis next to each cluster are the abbreviated names of the putative corresponding cell types found in vivo (Epi:

epiblast; bi_Ec: bi-potent ectoderm; ME: mesendoderm; NE: neural ectoderm; NC: neural crest; M: mesoderm; DE: definitive endoderm). (B) Top: Plot

of the variances of the first ten principal components of the gene expression of cells in cluster C0. The red line is the maximum principal component

variance over 1000 randomizations of the data, showing that no principal component is statistically significant. Bottom: variances of the first principal

component of each cluster, normalized by the maximum principal component variance of the randomized gene expression data for the corresponding

cluster. (C) A list of high probability genes that belong to the various marker and transition gene classes that define the axes of the plots in Figure 3A,

each represented by one gene in curly brackets. The curly brackets contain the gene name with the highest probability for that class, and other high

probability genes (as in Figure 2A and B) are listed in the table. While some of the genes are used only once, others such as Otx2 and Oct4 are

repeatedly reused in different subspaces to describe the transition. (D) Flow cytometry analysis of cell populations sampled every 24 hr during

differentiation and immunostained for nine genes (two shown at a time for each density contour plot): Klf4, Otx2, Oct4, Sox2, Slug, Pax6, FoxA2, Gata4

(each taken from a different gene class shown in Figure 3C), and T recapitulate the predicted structure and temporal ordering of transitions through

discrete cell states. Axes represent the log of gene expression, normalized by the range between the minimum and maximum across each gene. Plots

in pink and green represent C2 and C3 lineages following the split from C1, respectively. (E) Live cell microscopy of Otx2 reporter (mCitrine) cell line to

infer the dynamics of cell state transition from C0 to C1. Sample images (shown) at t = 0, 6, 12, 18, and 24 hr of differentiation. Cells were terminated at

approximately 25 hr into differentiation and immunostained for Nanog (ES marker gene, Figure 2—figure supplement 2A), which shows an anti-

correlation between Otx2 and Nanog expression levels. (Scale bar = 100 mm) (F) Top: Time series (x-axis) traces of single-cell Otx2 (y-axis) expression

dynamics taken every 15 min show that the duration of transition from Otx2-low (C0) to Otx2-high (C1) is approximately 4 hr, which is well within the

time frame of one cell cycle (~10 hr). The end-point (t = 25 hr) Otx2 levels show a clear separation between high and low (histogram of ~200 cells shown

to the right in gray), indicating that some cells have made the transition from C0 to C1 while others not. Each trace is colored by its relative end-point

Nanog immunofluorescence intensity level. Otx2 levels are normalized by the mean level at t = 0. Bottom: Histogram (y-axis = log (cell count)) of

residence durations of ~400 cells in the Otx2-low C0 state, showing that transition times vary across multiple cell cycle lengths (time lapse length = 48

hr). Inset bar shows mean as well as upper (white) and lower quartiles of the transition durations of cells.

DOI: 10.7554/eLife.20487.011

The following source data and figure supplement are available for figure 3:

Source data 1. Probabilities of membership in marker and transition gene classes in final tree.

DOI: 10.7554/eLife.20487.012

Figure supplement 1. Validation of inferred cell types and lineage relationships.

DOI: 10.7554/eLife.20487.013
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Differentiation occurs through a series of discrete cell state transitions
The fact that gene expression in each cell cluster does not vary significantly – as measured by the rel-

ative sizes of the largest eigenvalues of the PC components of the gene expression data (or percent

variance explained thereby) versus that of the same data randomly shuffled (Figure 3B; Figure 3—

figure supplement 1B) – allows for genes to be sorted into a few gene classes that show highly cor-

related expression patterns across clusters (Figure 3C). This suggests that one can validate the

inferred sequence of cell state transitions and its gene expression dynamics by measuring the

expression of one gene from each class in differentiating cells over time.

In order to confirm the gene expression dynamics over the inferred sequence of cell state transi-

tions, we assessed populations of cells for their expression levels of key transition and marker genes

(each taken from a different gene class) via immunostaining and flow cytometry. We sampled mES

cell populations every 24 hr during differentiation and immunostained each for Klf4, Otx2, Oct4,

Sox2, Pax6, Slug, FoxA2, Gata4 and T. (Although T is not assigned to a specific gene class, it is

highly expressed in the mesendoderm-like states C2 and C4, and it thus allows us to distinguish C2

from the earlier epiblast-like state C1.) The flow cytometry density contour plots shown (Figure 3D)

are characterized by high-density peaks which are separated from one another by regions of low

density, mirroring the discreteness of the cell states inferred from single-cell transcriptomics data.

The relative locations of these high-density peaks and the time at which they appear and disappear

recapitulate the inferred gene expression dynamics of the cell state transitions of the lineage tree.

During the first two days of differentiation, all cell populations downregulated Klf4 and upregu-

lated Otx2, as shown in the first row of density contour plots in Figure 3D. This is consistent with

the first observed state transition in our inferred lineage tree from the naı̈ve ES C0 state to the

primed epiblast-like state C1. On day three of differentiation (third column of plots in Figure 3D),

Sox2 and Oct4 are asymmetrically downregulated relative to the preceding population, as is seen in

mesendoderm-like state C2 and bi-potent ectoderm-like state C3 relative to the epiblast-like state

C1. Sox2-high, Oct4-low cells on day three are either high for Pax6 or for Slug, consistent with com-

parisons between the neural ectoderm-like state C5 and neural crest-like C6. On day four, the Pax6-

high and Slug-high populations become proportionally larger as the Pax6/Slug-low population

shrinks, supporting the inferred temporal ordering that C5 and C6 arise from the bi-potent ecto-

derm-like state C3. Oct4-high, Sox2-low cells on day three of differentiation are high for T, but show

two discrete levels of FoxA2, mirroring the difference between the two mesendoderm-like states C2

(FoxA2-low) and C4 (FoxA2-high). Further, we found that Etv5, a gene whose expression dynamics

had hitherto not been implicated with early mesendodermal differentiation in mammals, was signifi-

cantly downregulated from C2 to C4, as predicted from the single-cell gene expression data (Fig-

ure 3—figure supplement 1C). Finally, at days four and five, we observe FoxA2-high, Gata4-low

and FoxA2-low, Gata4-high cell populations, which correspond to the primed mesendoderm and

definitive endoderm-like states C4 and C8 and the mesoderm-like state C7, respectively. We thus

confirmed that differentiating cell populations recapitulate the gene expression dynamics of cell

state transitions inferred from single-cell data (Figure 3A).

The observation that the majority of randomly sampled cells are found to belong to one of nine

discrete cell states (both transcriptionally and at the protein level) suggests that cell state transitions

occur within a relatively short timeframe compared to the amount of time cells spend within each

state. We tested this hypothesis on the first cell state transition from the naı̈ve ES C0 state to the

primed epiblast-like state C1 (Figure 3A). To do so, we generated an Otx2-mCitrine fusion protein

reporter mES cell line (Materials and methods) and observed the single-cell-resolution dynamics of

Otx2 expression for up to two days (Figure 3E and F).

In agreement with our hypothesis, we observed that Otx2 levels, at the end of 24 hr of differenti-

ation, show a bimodal distribution (Figure 3F, top), and cells tend to occupy either an Otx2-low

state (corresponding to ES state C0) or an Otx2-high state (corresponding to epiblast-like state C1).

We find that cells transition from an Otx2-low to an Otx2-high state well within the duration of a sin-

gle cell cycle (mean transition duration of 4.52 hr compared to the cell-cycle length of approximately

10 hr). In contrast, cells tend to stay in either Otx2-low or -high states for up to multiple cell cycles,

with a large amount of cell-to-cell variability in the residence duration (Figure 3F, bottom). Together

with our results from the analysis of single-cell transcriptomics data, these observations show that
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cells reside in discrete states in gene expression space and correspondingly undergo abrupt state

transitions.

A probabilistic model that replicates the observed discrete cell states
predicts state-dependent interpretation of perturbations
Our analysis of single-cell gene expression data suggested a lineage tree composed of discrete cell

states, and identified genes associated with individual cell states and transitions between them.

While we predict the existence of discrete cell states based on their gene expression pattern, finding

unique physiological properties that can define and distinguish their existence functionally would

lend even greater support to this prediction. We therefore next sought to find properties of cell

states that distinguished them functionally from one another. In order to do so, we built a predictive

and testable quantitative model of the underlying gene regulatory network based on the expression

patterns of the marker and transition genes.

From the 889 genes that were categorized as either marker or transition genes for all the high

probability triplets, we first chose genes involved only in the triplets that fall directly along the

inferred lineage tree. That is, we removed genes that were categorized as transition or marker genes

for triplets consisting of ‘indirect’ lineage relationships, where at least one cell state is skipped

between two cell states connected through the lineage tree. For instance, we did not consider the

genes categorized as marker or transition genes only in the triplet C0, C1 and C5, because C3 is

skipped between C1 and C5.

Since some transition genes inferred from our Bayesian analysis are re-used to infer multiple local

state transitions (Figure 3C ,e.g., Oct4, Otx2), we classified transcription factors based on their dis-

tinct binarized patterns of expression across all nine cell states, with genes showing the same pat-

terns belonging to the same gene module (Materials and methods, Figure 4—figure supplement

1A, Figure 4—source data 1). Hence, we categorized the 321 marker and transition genes involving

‘direct’ triplets along the tree into 26 gene modules, each of which showed distinct patterns of

expression across the cell states. Further, because our goal was to test whether different cell states

were functionally distinct (i.e., respond differently to the same signals and gene expression changes),

we also noted the expression pattern of signaling factor genes belonging to FGF, WNT, LIF and

BMP signaling pathways along the lineage tree (Figure 3A). These signaling factor genes constitut-

ing each of these modules were selected based on GO categories, leading to a total of 29 gene

modules (Materials and methods). We denote each gene module by a representative gene in square

brackets; for example, the gene module that uniquely characterizes the ES state C0 is denoted as

[Klf4] (Figure 4—source data 1 and 2).

Owing to the large number of gene modules, and consequently even larger number of potential

interactions between these modules, even the simplest mathematical model would consist of hun-

dreds of parameters. However, for most of these parameters, direct experimental measurements are

not available. In order to overcome this challenge, we exploited recent developments based on

renormalization group approaches to determine which parameters are relevant for the observed

data (Machta et al., 2013). We adapted the seminal model of artificial neural networks, known as

the Hopfield model (Fard et al., 2016; Hopfield, 1984; Maetschke and Ragan, 2014), to construct

an effective gene regulatory network between the 29 gene modules. By construction, we required

that this mathematical model produces the nine cell states seen in Figure 3A. We considered a net-

work that contains direct interactions, in which each module j exerts a drive on module i, which is

equal to an interaction strength Jij (positive or negative) multiplied by the concentration of module j.

The total drive on module i is the sum of the drives from the different modules. Given our observa-

tion of discrete cell states, we further considered that the total drive on module i affects expression

in a highly non-linear manner, with high gene expression for drives that exceed a critical drive f0,

and low gene expression otherwise (Figure 4—figure supplement 1B). For simplicity, we assumed

that the expression of every gene module exhibits a non-linear, step-function response, when sub-

jected to the same drive; thereby reducing the number of parameters of the model. Indeed there

are numerous genes that manifest sigmoidal-like response in expression, in the presence of internal

and external stimuli (Lebrecht et al., 2005; Segal and Widom, 2009). Thus the effective dynamics

of expression levels mi of each module i are given by the non-linear equation:
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dmi

dt
¼H

j

P

Jijmj�f0

� �

�
mi

ti

where H is the Heaviside step function and ti is the effective lifetime of module i (Materials and

methods).

We determined the set of interactions Jij that are consistent with the observed cell states (C0-C8,

Figure 3A) being stable fixed points of the network. If state m
!a
¼ ma

1
; . . . ; ma

29

� 	

with expression

level ma
i in module i is a stable fixed point of the network, then the interactions Jij must be such that

the total drive on each module that is expressed in m
!a

is greater than the critical drive, and the total

drive on each module that is not expressed in m
!a

is less than the critical drive:

ma
i ¼ 1 )

X

j

Jijm
a
j � f0

ma
i ¼ 0 )

X

j

Jijm
a
j < f0

Thus, for each stable state, we have 29 constraints on the possible values of Jij, one for each mod-

ule. Given that we have nine cell states, there are 29*9 = 261 inequalities that constrain the values of

the 292 = 841 different parameters, Jij. The problem is therefore underdetermined even for our sim-

plified model of the underlying network, and there are an infinite number of solutions that would

allow for the observed cell states to be stable.

By using a linear programming method to obtain an ensemble of 10,000 sets of Jij interactions

(Materials and methods), each satisfying the constraint that all nine cell states are stable fixed points,

we estimated the probability distribution for the 841 parameters of the model (Figure 4A and Fig-

ure 4—figure supplement 2), giving us a probabilistic model of the underlying network. We further

assumed that all the possible 10,000 sets of Jij interactions that reproduced the nine stable cell

states were equally likely, since we did not have any experimental evidence to distinguish between

them.

We used this probabilistic model to make testable predictions as to how different cell states

respond to perturbations: to see if different cell states are defined not only by their distinct tran-

scriptional profiles, but also functionally distinct in their phenotypic responses to the same perturba-

tions. There are a vast number of testable predictions that one could extract from our gene

regulatory network model. However, given the low throughput nature of perturbation experiments,

we selected three distinct probabilistic predictions, each probing different aspects of the model

gene regulatory network.

First, we considered changes in the effective interaction between two gene modules as a function

of cell state (i.e., how the expression level changes of one gene module affect the expression of

another gene module differs across cell states due to the difference sets of gene modules present in

each state). To this end, we looked at two classes of gene module pairs: (i) gene modules that are

co-expressed in two mother-daughter cell states and (ii) gene modules that are never co-expressed

in any cell state.

Gene modules [Sox2] and [Oct4] are highly expressed in both the ES cluster C0 and the epiblast-

like C1 cluster, after which they are asymmetrically downregulated in the mesendoderm-like C2 and

ectoderm-like C3. We find that for 67.5% of the 10,000 sampled solutions, [Sox2] and [Oct4] have

mutually inhibitory interactions (i.e., negative coupling constants). Although both [Sox2] and [Oct4]

are present together in the C0 and C1 states, their effective interactions are altered in different ways

in each cell state by the presence of other gene modules. As cells transition from state C0 to C1,

they downregulate gene modules [Klf4], [Atf2], [Apex1] and [Ets2], and upregulate [Hes6] and [Otx2],

among others (Figure 4B and C), leading to changes in the effective interaction strength between

[Sox2] and [Oct4]. By incrementally increasing [Sox2] levels relative to its base value and assessing

the fraction of models that show [Oct4] downregulation, we found that [Oct4] levels are predicted to

be more stable to [Sox2] overexpression in state C0 than in C1 (Figure 4D), thus distinguishing C0

and C1 functionally (Geula et al., 2015).
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Figure 4. Quantitative modeling of the network underlying germ layer differentiation. (A) The inferred gene regulatory network from 10,000 sampled

solutions that stabilize each of the nine cell states. Each circle represents a gene module. Mean positive and negative interactions between the

modules are shown in red and green, respectively, and their thickness and transparency are proportional to the absolute magnitude of the mean and

the coefficient of variation (c.v.), respectively. The colored circles represent the gene modules expressed uniquely in only one of the cell states (color

code matched with Figure 3A for each state). (B, C) Subsets of the network consisting of gene modules that are expressed in (and stabilize) the naı̈ve

Figure 4 continued on next page
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On the other hand, [Snai1] and [Oct4] are not expressed together in any of the nine cell states.

We investigated the predicted effects of [Snai1] overexpression on [Oct4] in the epiblast-like state

C1 and mesendoderm-like state C2, both of which normally express [Oct4] but not [Snai1]. Although

[Snai1] has a negative interaction with [Oct4] in 79.2% of the models, the modules expressed in C1

exert a greater positive drive on [Oct4] (Figure 4E and F) than those expressed in C2. This leads to

the prediction that [Oct4] is less sensitive to [Snai1] overexpression in state C1 compared to C2

(Figure 4G).

We next considered the effect of morphogen signals in different states. Specifically, we consid-

ered the LIF, BMP, WNT and FGF signaling pathways, which are known to play a significant role in

patterning the early embryo, as well as are central to our in vitro differentiation process (Materials

and methods). We grouped signaling genes by their respective pathways (defined by GO categories)

and assigned each group to a module based on its average expression pattern across the nine cell

states. Because WNT and FGF modules show no changes in expression across all cell states (most

likely due to the large number of genes that fall into the relevant GO categories), we focused on

investigating the effects of LIF and BMP signaling on cells in the epiblast-like C1 and in the bi-potent

ectoderm-like state C3 (Figure 4H). Given an initial state C1 or C3, we calculated the probabilities

that cells either remain in the same state or move to a different state in response to [LIF] and [BMP]

(Materials and methods). Our simulations found that for ~98% of the models, cells that are initially in

state C1 either remained stabilized in C1 or moved to state C0 in response to [LIF] and [BMP] addi-

tion. However, in response to the same perturbation, the vast majority of cells in the C3 state either

transitioned to the neural crest-like state C6(11.2%) or stayed in the C3 state (86.1%) (Figure 4I).

To summarize, we predict that [Oct4] expression is less sensitive to [Sox2] overexpression in state

C0 than in C1; [Oct4] expression is less sensitive to [Snai1] overexpression in state C1 compared to

C2; and cells in state C3, but not in C1, can transition to state C6 following [LIF]+[BMP] exposure.

Figure 4 continued

ES C0 state (B) and epiblast-like C1 (C) state. As cells transition from C0 to C1, expression of [Klf4], [Apex1], [Ets2], [Atf2] modules is downregulated

(shown in gray) while [Hes6] and [Otx2] modules are upregulated, leading to changes in the effective interactions between gene modules that are

common to both C0 and C1 states, such as [Sox2] and [Oct4]. (D) [Sox2] overexpression (x-axis) plotted against the probability of [Oct4] downregulation

(y-axis) computed over 10,000 models (Materials and methods). In the C1 state (solid line), [Oct4] is downregulated in an increasing fraction of models

following [Sox2] overexpression, while in C0, [Oct4] is stable in ~96% of the models (dotted line). In order to obtain the error bars for this and

subsequent predictions, we randomly sampled three subsets of 3333 from the 10,000 models. For each set we computed the mean and standard error

of the proportion of models that show downregulation of Oct4 in response to Sox2 overexpression. (E, F) Subsets of the model consisting of gene

modules that are expressed in the epiblast-like C1 (E) and mesendoderm-like C2 (F) states, and their interactions with [Snai1], which is not normally

expressed in C1 or C2. As cells transition from the C1 to C2 state, [Hes6], [Sox2], [Otx2], [Churc1] are downregulated (shown in gray), while [Hmga1], [T],

[Atf2], [Hes1], [Ets2], [Apex1], [Brd7], [Hmgn2] and [Smarce1] are upregulated, leading to changes in the effective interactions between [Snai1] and

modules that are common to both C1 and C2, such as [Oct4]. (G) The probability of [Oct4] being downregulated (y-axis) as a function of [Snai1]

overexpression (x-axis). In the C1 state (solid line), the over expression of [Snai1] has no effect on [Oct4] levels in ~94.5% of the 10,000 models whereas

in the C2 state (dotted line), the overexpression of [Snai1] leads to [Oct4] downregulation in up to 19% of the models. (H) The C3 state shows a

downregulation of [Oct4] and [BMP], and upregulation of [Tead1], [Apex1], [Pax6], [Smarce1], [Ets2], [Atf2], [Hes1], [Fhl1], [Hmgn2] modules relative to

C1. (I) Cells in different states are predicted to respond differently to morphogens. Plot showing the percentage of models (y-axis) where states C1 and

C3 (x-axis) transition to C6 (characterized by unique marker gene module [Msx2]), in response to [LIF]+[BMP]. C1 cells remain stable in response to [LIF]

+[BMP] signaling in >98% of the models whereas C3 cells are destabilized and move to the C6 state in ~11% of the models.

DOI: 10.7554/eLife.20487.014

The following source data and figure supplements are available for figure 4:

Source data 1. Gene modules used for modeling the network.

DOI: 10.7554/eLife.20487.015

Source data 2. Binary expression profiles of the gene modules used for modeling the network in the 9 cell clusters.

DOI: 10.7554/eLife.20487.016

Figure supplement 1. Summary of gene modules and illustration of production rate determination for each gene module.

DOI: 10.7554/eLife.20487.017

Figure supplement 2. Summary of parameters for model gene regulatory network.

DOI: 10.7554/eLife.20487.018

Figure supplement 3. The predictions of the gene regulatory network are robust to changes in the probability threshold for considering a gene to be

a transition or a marker gene.

DOI: 10.7554/eLife.20487.019
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Importantly, we further noted that the model predictions were robust to changes in the probabil-

ity cutoff for the genes we considered: although the number of gene modules changed (27 modules

for a cut off of 0.7 and 24 for 0.9), we found that the models made the same qualitative predictions

(Figure 4—figure supplement 3).

Thus, by categorizing genes into different modules by their expression patterns across the

observed cell states, these modules provide a starting point for modeling the gene regulatory net-

work responsible for cell fate decisions, allowing us to make predictions for how the network gives

rise to distinct phenotypic responses to the same perturbation across different cell states.

Interpretation of Sox2, Snai1, and LIF+BMP are cell state dependent
We next experimentally tested the qualitative aspects of the model’s predictions of state-depen-

dence in cells’ responses to perturbations. We first tested how cells’ Oct4 levels respond to Sox2

overexpression in the naı̈ve ES and epiblast-like states C0 and C1. We transiently transfected cells

with a plasmid containing a Tet-inducible bi-directional promoter, flanked by the open reading

frames of Sox2 and mCerulean, which we used as a fluorescent reporter of induction (Figure 5—fig-

ure supplement 1A). We induced overexpression in cells either in the undifferentiated C0 state or

the epiblast-like C1 state, which correspond to Day 0 and Day 2 of differentiation, respectively

(Figure 3D, Figure 5—figure supplement 1D). As a control, we used identical populations that

were transfected with a plasmid containing only mCerulean under the inducible promoter. In such

experiments, we typically saw mCerulean fluorescence appear approximately three hours into induc-

tion and persist for about three to four days after transfection. We therefore induced overexpression

for 24 hr to minimize the effect of plasmid loss but still allow for several cell cycles to occur during

induction. Following induction, we fixed and immunostained the cells for Oct4, and analyzed the

results via flow cytometry. In agreement with our predictions (Figure 4D), we found that Sox2 over-

expression correlates (R ¼ �0:3258; p ¼ 1:48 � 10
�13) with downregulation of Oct4 in the epiblast-

like state C1 (significant relative to control, p ¼ 5:72� 10
�31; see also Figure 5—figure supplement

1C), whereas this effect was not observed in undifferentiated cells (state C0) (Figure 5A and B).

We then tested the effects of Snai1 overexpression on Oct4 in the epiblast-like state C1 and mes-

endoderm-like state C2, using the same experimental framework as described above. On day three

of differentiation, cell populations either contain a mixture of C1, C2 and (minimally) C4 cell states, or

a combination of C1, C3 and C5 (or C6), depending on the signaling conditions (Figure 3D). Using

the signaling conditions that yield the former set of cell states (C1, C2 and C4), we transfected cells

at 2.5 days into differentiation, and drove overexpression of Snai1 12 hr later in a population consist-

ing primarily of cells in C1 and C2 states (Figure 5—figure supplement 1D). After 24 hr of Snai1

overexpression and further differentiation, we fixed and immunostained the cells for T to distinguish

cells in C1 (T-low) and C2 (T-high) states. We also immunostained the cells for Oct4 to distinguish the

C1 state from other T-low states that arise during the last 24 hr of differentiation following the initia-

tion of induction. We found that the fraction of C1 cells within the transfected population was signifi-

cantly reduced relative to control (p ¼ 1:98� 10
�13), suggesting that cells in this state had

downregulated Oct4 levels in response to Snai1 overexpression. On the other hand, the fraction of

C2 cells within the transfected population and their Oct4 levels were maintained relative to control,

in agreement with our predictions (Figure 4G; Figure 5C and D).

Finally, we tested whether cells in epiblast-like C1 and bi-potent ectoderm-like C3 states respond

differently to LIF+BMP signaling, as predicted by our model. In order to investigate the relationship

between a cell’s initial state and its final state in response to LIF+BMP exposure, we needed to

assess cells’ initial states non-invasively. We found that 2.5 days into differentiation, we could obtain

populations that consist primarily of cells in epiblast-like state C1 and bi-potent ectoderm-like state

C3 (Figure 5—figure supplement 1E), which have high and low expression of Oct4, respectively.

We therefore utilized an Oct4-mCitrine mES cell line that we had previously engineered

(Thomson et al., 2011) to distinguish cells in C1 and C3 states after 2.5 days of differentiation. At

this point, 1200 U/mL LIF and 25 ng/mL BMP4 were added to the media, after which we followed

individual cells’ Oct4 expression dynamics for approximately 24 hr via live-cell microscopy, followed

by fixing and immunostaining for Msx2, a unique marker gene for the neural crest-like cell state C6

(Figure 5E and F). As predicted by the model (Figure 4I), only cells that had low Oct4 levels (and

were therefore in the bi-potent ectoderm-like state C3) prior to LIF+BMP exposure showed
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Figure 5. Experimental validation shows that interpretation of Sox2, Snai1, and LIF+BMP is cell state dependent. (A) Comparison of the effects of Sox2

overexpression (x-axis) on Oct4 levels (y-axis) in the naı̈ve ES state C0 (left) and epiblast-like C1 state shows negative correlation between Sox2

overexpression and Oct4 levels in the C1 state, but not in C0. Plots showing mCerulean (marker) -only overexpression in C0 or C1 are indistinguishable

from Sox2 overexpression in C0 (Figure 5—figure supplement 1C). (B) Fraction of Oct4-high cells (y-axis; defined as greater than 2s below the mean

log of Oct4 of non-transfected control cells) plotted against binned Sox2 overexpression level confirms model prediction (Figure 4D) that Sox2

overexpression leads to downregulation of Oct4 in C1 but not C0. (C) Comparison of the effects of Snai1 and mCerulean-only (left) overexpression on

Oct4 levels (x-axis) in the epiblast-like C1 and mesendoderm-like C2 states (y-axis; T-low and –high, respectively) shows downregulation of Oct4 in

response to Snai1 overexpression in the C1 state but not in C2. (D) Fraction of Oct4-high cells in Snai1 overexpressing cells, normalized by this fraction

in mCerulean overexpressing control cells (y-axis), plotted against binned Snai1 overexpression level (x-axis) confirms the prediction (Figure 4G) that

Figure 5 continued on next page
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upregulation of Msx2 in response to LIF+BMP (R ¼ �0:5056; p ¼ 0:0044; Figure 5G and H).

Together, these results show that the inferred cell states reflect phenotypic discreteness in cells’

responses to perturbations, and that the gene expression changes that define these responses mir-

ror those predicted by our model gene regulatory network.

Discussion
By using learned sparse patterns of gene expression from established experimental systems

(Furchtgott et al., 2016), we can analyze single-cell transcriptomics data to uncover the gene

expression dynamics of differentiation. This method naturally identifies a small set of transcription

factors whose expression profiles are multimodal across neighboring cell states. Given that transcrip-

tion factors are key orchestrators of gene expression and therefore cell fate decisions (Spitz and Fur-

long, 2012), multimodal distributions of the expression levels of even a small set of transcription

factors can define cell states in a population of cells.

While cell states can be characterized by the gene expression patterns of key sets of genes, these

states can only be fully validated by demonstrating distinct physiological properties. To discover dis-

tinct properties of the cell states in early mES cell differentiation, we built probabilistic models of the

underlying network. Requiring these models to have discrete cell states leads to the prediction that

each cell state has a distinct response to perturbations by signals and changing levels of gene

expression. Thus, the cell states we discovered can be functionally defined by their responses to per-

turbation. Our experimental tests show, as predicted by the model network, that Oct4 is either

downregulated or unaffected by overexpression of Sox2 or Snai1, depending on the cell state. Previ-

ous studies have already shown that Sox2 and Oct4, along with Klf4, constitute part of a positive

feedback loop that stabilizes the pluripotent ground state (Kim et al., 2008; Young, 2011). It is also

known that in undifferentiated cells, Snai1 overexpression leads to downregulation of Oct4 expres-

sion and, subsequently, to exit of pluripotency (Galvagni et al., 2015). However, our results demon-

strate that these interactions are state-dependent by showing that the effective positive interactions

between Sox2 and Oct4 become destabilized as Klf4 levels drop and cells transition to a primed,

epiblast-like pluripotent state. Similarly, the negative interaction exerted by Snai1 on Oct4 becomes

attenuated in the presence of early primitive streak genes such as T. We also predict and show that

LIF+BMP exposure pushes bi-potent ectoderm-like cells toward an Msx2-positive neural crest-like

state, but this effect is not seen in epiblast-like cells. These results are further supported by the fact

that both LIF and BMP signaling pathways can be used to keep cells in the pluripotent cell state

(Chambers, 2004; Tam et al., 2006; Ying and Smith, 2003), and that BMP signaling plays a signifi-

cant role in the differentiation of neural crest cells (Knecht and Bronner-Fraser, 2002). Together,

these findings signify that the inferred cell states directly reflect differences in cells’ responses to

perturbations and show that these cell states can also be defined by their unique responses to

perturbations.

Comprehensive interrogation of gene expression through RNA sequencing is impossible without

the termination of cells, providing only static snapshots of gene expression during differentiation.

Despite this and the complexity of the underlying network, we discover that both cell states and the

Figure 5 continued

Snai1 overexpression leads to greater downregulation of Oct4 in C2 compared to C1. (E) Live cell images of Oct4-mCitrine cells at t = 0, 6, 12, 18, 24 hr

of LIF+BMP exposure. At t = 0, cells are either in state C1 (Oct4-high) or C3 (Oct4-low) (Figure 5—figure supplement 1E). (Scale bar = 100 mm) Cells

were fixed at t = 24 hr and immunostained for Msx2. (F) Time series (x-axis) traces of single-cell Oct4 expression (y-axis) taken every 15 min from live

cells. Each trace is colored by its relative end-point Msx2 immunofluorescence intensity level. (G) The initial Oct4 reporter (mCitrine) intensity (y-axis)

and final Msx2 immunofluorescence (x-axis) are negatively correlated. Each dot represents a single cell. Histogram of Oct4 reporter intensity at t = 0

levels shown in gray. Based on this histogram, we defined a range of threshold values for determining Oct4-high and –low (shown in overlapping region

of orange and green along y-axis). (H) Plot showing fraction of Msx2-high (y-axis; as defined by greater than 2s above background) confirms prediction

(Figure 4I) that Msx2 is upregulated with a greater probability in the C3 state compared to C1 (x-axis) in response to LIF+BMP exposure.

DOI: 10.7554/eLife.20487.020

The following figure supplement is available for figure 5:

Figure supplement 1. Controls for perturbation experiments.

DOI: 10.7554/eLife.20487.021

Jang et al. eLife 2017;6:e20487. DOI: 10.7554/eLife.20487 17 of 27

Research article Computational and Systems Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.20487.020
http://dx.doi.org/10.7554/eLife.20487.021
http://dx.doi.org/10.7554/eLife.20487


sequence of cell state transitions can be accurately determined by monitoring the levels of just a few

transition or marker genes. Monitoring the expression dynamics of these key genes in live cells using

microscopy will allow us in the future to continuously track the cell-fate decisions of individual cells.

The inferred gene modules therefore represent the ‘order parameters’ by which cell-state transition

dynamics can be directly measured. Live cell microscopy experiments will also allow us to measure,

in conjunction with cell state transition dynamics, changes in individual cells’ spatial environment,

movement, lineage history, and cell cycle dynamics in order to address fundamental biological ques-

tions as to how these factors affect cell fate decisions. Finally, our results suggest that cell-to-cell

heterogeneity within differentiating populations arises largely as a consequence of cells’ variability in

their timing of cell state transitions. Our inferred cell clusters show mixing of cells from different

time points (Figure 1—source data 1, Figure 2—source data 1), suggesting that the observed

states themselves do not change over time and that at the population level, differentiation occurs as

a change in the proportions of cells in various cell states rather than through changes in the cell

states themselves (Figure 3D). Since cells interpret perturbations differently even in consecutive

states (Figure 5), this suggests that heterogeneity arising from timing variability is further amplified

in response to signal addition or fluctuations in gene expression level. These findings emphasize the

importance of understanding how the timing of cell state transitions is controlled during

development.

Materials and methods

Clustering and re-clustering using seurat
Clustering was performed using Seurat (Satija et al., 2015). For the initial seed clustering, we

applied Seurat to the gene expression of all 2672 transcription factors for the 288 single cells. For

subsequent re-clustering steps, clustering was performed on a reduced set of genes for which

p ai ¼ 1 or bi ¼ 1j g
A;B;C
i

n o

; T; Cf g
� �

>0:5 for at least one triplet at the previous iteration (assuming a

prior odds of ObjT ið Þ ¼ 5� 10
�2 ). This reduced set contained between 800 and 1050 genes at each

of the reclustering steps (Figure 2—figure supplement 2A).

Seurat performs spectral t-SNE on the statistically significant principal components (PCs) of the

gene expression dataset, and it determines the significance of each PC score using a randomization

approach developed by Chung and Storey (Chung and Storey, 2015). Our initial seed clustering

was performed using the first 10 PCs; subsequent re-clusterings used the first 8 PCs.

Finally, Seurat performs density-based clustering on the t-SNE map; we used a density parameter

of G = 8 (Macosko et al., 2015).

Convergence of clustering configurations from different seed
configurations
In order to test that our results were robust to the choice of seed clusters, we further used k-means

clustering, a standard clustering method, which has previously been applied to identify different cell

types using single-cell transcriptomics data (Buettner et al., 2015).

We start with a seed clustering configuration of 12 clusters c0
1
; c0

2
; . . . ; c0

12

� 	

obtained using

k-means clustering, which is distinct from the seed clustering configuration obtained via Seurat

(Satija et al., 2015). The number of clusters was determined using the gap statistic

(Tibshirani et al., 2001). We obtained 164 sets of transitions between clusters and identified 981

transcription factors that were high probability (probability >0.5) marker or transition genes for at

least one of the identified transitions. We next re-clustered the single cells in the gene expression

space defined by these 981 marker or transition genes, using k-means clustering, to obtain a new

cluster set C1f g ¼ c0
1
; c0

2
; . . . ; c0

10

� 	

, consisting of 10 clusters. In the next iteration, the number of clus-

ters went down to 9, and so on. By iteratively determining the most likely sets of transitions, the cor-

responding most likely marker and transition genes and re-clustering the cells within the subspace of

these genes, our algorithm converged upon the most likely set of cell clusters (Figure 2A). We found

that the eventual clustering configurations obtained using k-means clustering and Seurat are the

same, confirming that the seed clusters do not affect the final outcome (Figure 2—figure supple-

ment 2A, B and C).
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Framework for quantitative modeling of germ layer differentiation
Classifying genes based on their patterns of expression along the inferred lineage tree rather than

by gene-gene correlations allowed us to identify gene modules (which included the transition and

marker genes we inferred as well as signaling genes: BMP, WNT, LIF, see Tables S4 and S5) with sim-

ilar expression patterns in successive cell-fate decisions.

Determination of gene modules
We obtained 321 transcription factors from the triplets along the tree and classify them based on

their pattern across the triplets. In order to explain the discretization procedure let consider the

example of Otx2, which is a transition gene for the triplet involving C1, C2 and C3 clusters, where C1

is the intermediate cluster. Since Otx2 is expressed at high levels in cluster C1 and C3 and is downre-

gulated in cluster C2, we assigned it a value of 1 in clusters C1 and C3 respectively and 0 in cluster

C2. We then repeated this local binarization process across all triplets along the lineage tree. We

grouped all the genes that showed the same locally binarized expression pattern as Otx2 and

obtained their average expression level across all the other clusters. Subsequently, we assigned

these genes a value of 1 in a cluster if the average expression of these genes in that cluster was com-

parable (within ~10% of the mean) or higher than the lower value of their average expression level in

the C1 and C3 clusters. Some genes, such as Oct4 and Etv5 are re-used at multiple branching points

i.e. they belong to multiple triplets, either as marker genes or transition genes, and hence belong to

different groups (Figure 4—figure supplement 1). Certain genes that are re-used exhibit three dis-

tinct levels of expression. For instance, Sox2 comes up as a marker gene for C0 cluster, when we

consider the triplets involving clusters C0, C1 and C2 and C0, C1 and C3 clusters respectively. How-

ever, it also acts as a transition gene for the triplet involving C1, C2 and C3 clusters, where Sox2 is

downregulated in C2. Such a gene expression pattern would require three distinct levels (high in C0,

medium in C1, C3, and low in C2). We classified the medium and higher expression level as one and

low expression level as 0. It must be noted that we determined binary gene expression profiles by

calculating the mean log2 fold-change in expression level for each group of genes. This way we

acquired a total of 29 modules with unique binary gene expression profiles. We denote each module

by a representative gene; the genes that belong to each module are shown in Figure 4—source

data 1.

Local-field gene regulatory network model for gene modules
In order to build a quantitative model relating the gene modules, we write a N-component gene

regulatory network governed by a set of differential equations:

m
:

i ¼ �
mi

ti

þ r0i þ ri m
!

� �

i¼ 1; . . . ; Nð Þ (1)

where ti and r0i are respectively the life-time and basal production rate of module i; we will rescale ti

= 1 and r0i = 0 without any loss of generality. We denote the level of module i as mi. We assume

here that modules interact only by modulating each-other’s rate of production, described here by

rate functions ri m
!

� �

which depend on the state m
!
¼ m1; . . . ; mN½ � of the gene regulatory network.

As above, we consider that the production rate ri m
!

� �

is the result of only direct interactions, in

which each gene j exerts a drive on gene i which is equal to an interaction strength Jij (positive or

negative) multiplied by the level of module j. The total drive fi on gene i is the sum of the drives

from the different modules:

fi m
!

� �

¼
X

N

j¼1

Jijmj (2)

We now assume ri has a universal scaling form that is the same for all factors,

ri m
!

� �

¼ r � fi�f0ð Þ½ � (3)

where r f;f0;�ð Þ is a monotonic sigmoidal function centered at f0 and bounded by the limits
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r fð Þ ¼
0; f�f0

1; f�f0

�

(4)

the sharpness of crossover is determined by the nonlinearity parameter �. The upper bound of ri ¼ 1

sets the maximum sustainable expression at mi ¼ 1. In the limit �!¥, r fð Þ becomes the Heaviside

step function, and mi 2 0;1f g is binary.

Suppose state m
!a
¼ ma

1
; . . . ; ma

29

� 	

with expression level ma
i in module i is a stable state of the

network. In the limit �! ¥, the condition for m
!a

to be a fixed point is:

ma
i ¼H

j

P

Jijm
a
j �f0

� �

ma
i ;m

a
j 2 0;1f g (5)

where H is the Heaviside step function. (Note that if f0>0 then m
!
¼ 0
!

is always a stable fixed point

of the network.)

In this limit, each state m
!a

of the network is associated with N constraints given by inequalities of

the form

ma
i ¼ 0 )

j

P

Jijm
a
j < f0 (6)

ma
i ¼ 1 )

j

P

Jijm
a
j > f0 (7)

If m
!a

is a fixed point, all N of its constraints must hold. If we know the fixed points of the network,

then we can write down a system of inequalities that constrain possible values for Jij. Since gene-

gene interactions cannot be infinitely strong, Jij must be bounded. We take jJijj<1 and f0 ¼ 0:1. We

further vary the value of the critical drive f0 from �2 to 2 to check the robustness of the predictions.

We find that all the results qualitatively hold although the individual probabilities change.

Linear programming
The constraints (7) and (8) placed on Jij by the fixed point condition are linear in Jij. We can take

advantage of this fact and use linear programming methods (Gass, 2013) to obtain solutions for Jij

by extremizing a linear objective function of the form

U Jij
� �

¼
i;j

P

aijJij ¼ constant (8)

where aij are constant coefficients. The system of constraints defines a N2-dimensional polytope in J-

space that encloses all solutions of Jij consistent with the fixed-point constraints, and U defines a

N2� 1 dimensional hyperplane. Linear programming returns a solution for Jij (a point in J-space)

where the polytope contacts a U-plane of extremal value. The solution will lie on the boundary of

the polytope and is in general non-unique. There is no general principle with which to select any spe-

cific U-plane as the ‘best’ objective function. Furthermore, one would like to sample points in the

interior of the polytope, and not just on its surface. Here, guided by the fact that we seek pertuba-

tive solutions for Jij that ideally lie close to the origin, we impose a fictitious additional constraint on

the polytope in the form of a hyperplane that contains the origin

i;j

P

aijJij � 0; aij 2 0;1f g (9)

where the coefficients aij are randomly chosen; this in effect slices the polytope in two and exposes

an interior plane. Then, using the same choices of aij to define a U-plane, we seek a linear program-

ming solution that maximizes U, that is, a solution that lies on the now-exposed interior plane (if pos-

sible). Because these fictitious constraints radiate from the origin, points in the polytope that lie

closest to the origin are sampled more densely.
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Common features of the sampled networks
By using many different randomly generated fictitious constraints to sample the polytope, we can

study the ensemble of model networks that all satisfy the fixed point constraints (Figure 4—source

data 2), and attempt to determine whether they share any common regulatory motifs. As discussed

in the main text, we sampled 10,000 solutions Jij that satisfied the fixed-point constraints defined by

the binarized expression patterns of the known cell states. We then calculated the mean and coeffi-

cient of variation (c.v.) for each coupling. We were thus able to discover a core network between the

different modules that is shared by the majority of solutions (Figure 4A).

Predictions for Sox2 and Snai1 overexpression
Our model makes predictions for what happens to the level of Oct4 when Sox2 and Snai1 are over-

expressed in different cell states. Sox2 and Oct4 are both present in the C0 and C1 clusters. On the

other hand, Snai1 is not present in C1 and C2 but Oct4 is present in both clusters. We perturb the

Sox2 and Snai1 levels by amounts Ds in the above mentioned states, which lead to a change in the

field fi total drive on Oct4 level. Numerically we vary Ds in steps of 0.1 and for each step compute

the number of models out of the 10000 total models, for which the Oct4 level decreases to zero.

From this number we obtain the fraction of models for which the level of Oct4 goes down.

Predictions for BMP and LIF addition
In order to predict the effect of morphogen signals in different cell states, we considered the LIF,

BMP, WNT, and FGF signaling pathways, which are known to play a significant role in patterning the

early embryo. We assumed that no single gene in each given pathway is sufficient to evoke a signal-

ing response, but a response rather requires the combined presence of the various constituent

genes of the pathway. We therefore grouped genes by their respective signaling pathways and

assigned each group to a module based on its average expression pattern across the nine cell states.

The discretization process of this mean expression pattern was the same as that used for TF genes.

The signaling genes we used are shown in Figure 4—source data 1.

We next modeled the dynamics of BMP and LIF addition. By construction, the nine observed cell

states (and the null state m
!
¼ 0
!
) are fixed points for all 10,000 sampled solutions for Jij. However,

each solution Jij may have additional spurious fixed points. However, given that we only see 9 cell

states, we would expect the spurious states to be unstable. In order to overcome this problem, we

used the following method.

Given a particular solution Jij, any arbitrary state of the network m
!

(not necessarily a fixed point)

will have dynamics obeying

mi tþ 1ð Þ ¼H
j

P

Jijmj tð Þ�f0

� �

(10)

where mi tð Þ and mi tþ 1ð Þ are the levels of module i at successive discretized time points.

For each particular solution Jij, cells will get stuck in spurious fixed points; yet these spurious fixed

points are highly unlikely to exist since they are stable in only a small number of the sampled Jij. We

can capture the average dynamics of different states of the network given the set of sampled solu-

tions Jij
� 	

by calculating the probability over all sampled solutions of moving from one arbitrary

state m
!a

to another arbitrary state m
!b

. This allows us to define a 229 � 229 state-to-state transition

matrix T:

Tb a ¼ p m
!a
!m
!b
j Jij
� 	

� �

(11)

If we denote as p
!

tð Þ the vector of probabilities of being in the 229 different states at time t, then

p
!

tþ 1ð Þ ¼ T p
!

tð Þ (12)

In order to figure out what happens to cells in different states to BMP and LIF addition, we calcu-

lated the probability of moving between fixed points m
!a

and m
!b

when overexpressing some set of
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modules mif g. We calculated the dynamics using the transition matrix T and enforced the overex-

pression of the set of modules (BMP and LIF module respectively) at each time point, updating the

probabilities p
!

tð Þ accordingly. The probabilities shown in Figure 4 are after 1000 time steps.

ES-cell culture
v6.5 (RRID: CVCL_C865; passage number 18 ~ 30; mycoplasma tested negative) mouse embryonic

cells were maintained and passaged in monolayer (non-embryoid body formation) in N2B27 basal

media with signaling molecules and/or small molecules added to the basal media. ES cells were

maintained in a pluripotent cell state using 1200 U/mL mLIF (murine leukemia inhibitory factor), 1

mM PD0325901 (MEK inhibitor), and 3 mM CHIR99021 (GSK inhibitor) conditions (a.k.a.

’LIF + 2i’; Ying et al., 2008), and passaged every two days. To passage cells, we added 0.01% tryp-

sin to cells after aspirating media and incubated the plate in 37’C for 1 ~ 2 min to detach cells. The

trypsin was then quenched with 0.5 mL of fetal bovine serum, and the resulting cell suspension was

collected, counted, and pelleted at 200 x g for 5 min at room temperature. The supernatant was

aspirated and the cells were resuspended and re-seeded onto a gelatinized tissue culture dish at a

density of 1e6 cells per 10 cm diameter plate. All cell lines were depleted of feeders and transi-

tioned to serum free medium over several passages prior to experiments (Ying and Smith, 2003).

N2B27 is prepared as described in Gaspard et al. (2008), Ying and Smith (2003).

ES cell differentiation
Cells were seeded at a density of 106 per 10 cm diameter plate, and were not trypsinized again until

they were harvested for analysis. We either exposed cells to 0.4 mM PD0325901 or 3 mM CHIR99021

and 10 ng/mL Activin A (human, rat, mouse) for 2 days or 3 days, respectively, followed by either 25

ng/mL hBmp4 or 1 mM LDN193189 (BMP antagonist) for up to two days. Media was replenished

every 48 hr. Cells exposed to 0.4 mM PD0325901 gave rise to ectodermal lineages, as characterized

by expression of Sox1, Pax6 (treated with LDN193189), Slug, and Msx2 (treated with hBmp4) after

three days of differentiation. Cells exposed to CHIR99021 and Activin A gave rise to mesendodermal

lineages (Sumi et al., 2008), as characterized by expression of T after three days of differentiation,

and FoxA2 (treated with LDN193189) and Gata4 (treated with hBmp4) after four days of

differentiation.

Single-cell RNA-Seq
CEL-seq libraries as previously reported (Hashimshony et al., 2012) with a few modifications. Single

cells were sorted with a FACSAria into 96 well plates containing 1.2 mL 2 � CellsDirect Buffer (Life

Technologies) with 0.1 mL of ERCCs diluted to 1 � 10�6 molecules (Life Technologies). Plates were

frozen and stored at �80˚C. For library preparation, mRNA was reverse transcribed using 0.15625

pmol of oligoT primer carrying a cell-specific 8 NT barcode and a 5 NT unique molecular identifier

(UMI) (Islam et al., 2014). Barcode design ensured at least two nucleotide differences from any

other barcode. Samples were lysed at 70˚C for 5 min, then reverse transcribed using Superscript III

for two hours at 50˚C, then primers digested with 1 mL of ExoSAP-IT (Affymetrix). Second strand syn-

thesis was carried out with Second Strand Synthesis Buffer, dNTPs, DNA Polymerase, and RNAse H

(NEB) at 16˚C for 2 hr. Single-cell cDNAs were pooled by 24 wells per library, with each library con-

taining a water-only well and one ERCC-only well. Pools were purified with an equal volume of RNA

Clean Beads (Beckman Coulter) and amplified at 37˚C for 15 hr using the HiScribe T7 High Yield

RNA Synthesis kit (NEB), and treated with DNAse I (Life Technologies). Amplified RNA was frag-

mented using the NEBNext RNA Fragmentation Module (NEB), purified with an equal volume of

RNA Clean Beads, and visualized using the RNA Pico Kit on the Bioanalyzer 2100 (Agilent). The RNA

fragments were repaired with Antarctic Phosphatase and Polynucleotide Kinase (NEB), and purified

using an equal volume of RNA Clean Beads. cDNA libraries were made using the NEBNext Small

Library Prep Kit according to the manufacturer’s instructions, except Superscript III was used for the

RT step. Index primers were used in PCR amplification. Approximately 160–200 nmol of a pool of

libraries were size selected to exclude species smaller than 180 bp on a 2% Dye Free cassette on the

Pippin Prep (Roccio et al., 2013) and concentrated to approximately 14 mL. Pools were then quanti-

fied by qRT-PCR using p5 (5’-AATGATACGGCGACCACCGAGA-3’) and p7 (5’-CAAGCAGAA-

GACGGCATACGAGAT-3’) primers and by Bioanalyzer (DNA High Sensitivity Kit, Agilent), and
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sequenced on an Illumina HiSeq. The custom sequencing primer: 5’-TCTACACGTTCAGAGTTC

TACAGTCCGACGATC-3’ was included with Illumina primer HP10 for sequencing. Standard Illumina

primers HP12 and HP11 were used for the index read and the transcript read, respectively. PE50 kits

(Illumina) were used for sequencing with read lengths of 25 nt, six nt, and 47 nt for read1 (cell bar-

code, UMI), index (library), and read2 (transcript), respectively. Following quantification, we dis-

carded the data from wells that yielded below a total of 20,000 UMI (threshold based on empty well

controls), which left us with 358 cells. Further, as others have recognized (Paul et al., 2015), we

found that some well-to-well mixing was present with CEL-Seq multiplexed single-cell RNA-Seq. We

used the data only from 288 cells because of this mixing artifact.

Immunofluorescence
Cells were grown on ibidi m-bottom plates and fixed with 4% paraformaldehyde. Cells were permea-

bilized with ice-cold 100% methanol, blocked with 5% donkey serum, incubated with primary anti-

body, washed, and incubated with DAPI and secondary antibody coupled to Alexa488 Alexa568, or

Alexa647. Images were acquired with a Zeiss 40� plan apo objective (NA 1.3) with the appropriate

filter sets. Data was analyzed using custom written code in MATLAB. Antibodies and dilutions used

in this study: Klf4 (Abcam ab129473, 1:400); Nanog (eBiosciences 14–5761, 1:800); Oct4 (Santa Cruz

sc-8628, 1:800; Cell Signaling 2840, 1:400); Sox2 (eBiosciences 14–9811, 1:800); Otx2 (Neuromics

GT15095, 1:400); T (Brachyury) (Santa Cruz sc-17745, 1:200); FoxA2 (Cell Signaling 8186, 1:400);

Gata4 (eBiosciences 14–9980, 1:400); Sox1 (Cell Signaling 4194, 1:200); Pax6 (DSHB Pax6, 1:200);

Msx1 +2 (DSHB 4G1, 1:200); Slug (Cell Signaling 9585, 1:200), Snai1 (Cell Signaling 2879, 1:200).

Live-cell microscopy
For live-cell time-lapse microscopy, cells were plated into N2B27 without phenol-red (plus signaling

molecules and small molecules) on ibidi m-bottom plates. Cells were imaged on a Zeiss Axiovision

inverted microscope with a Zeiss 40� plan apo objective (NA 1.3) with the appropriate filter sets

with an Orca-Flash 4.0 camera (Hamamatsu). The microscope was enclosed with an environmental

chamber in which CO2 and temperature were regulated at 5% and 37˚C, respectively. Images were

acquired every 15 min for 12–48 hr. Image acquisition was controlled by Zen (Zeiss); image analysis

was done with ImageJ (NIH) and Matlab (MathWorks). 38 HE GFP/43 HE DsRed/46 HE YFP/47 HE

CFP/49 DAPI/50 Cy5 filter sets from Zeiss. Transition duration of Otx2-mCitrine cells was defined as

the time between the last image at which a cell’s reporter intensity was equal to or below its inten-

sity at t = 1 and the first image at which its intensity was equal to or above 2.2 (mean – s of upper

mode of Otx2 reporter intensity) on the normalized scale.

Plasmid transfection
We cloned Sox2 or Snai1 cDNA to one side of a bi-directional Tet-on promoter (pTRE3G-BI; Clon-

tech), to the other side of which we had cloned in mCerulean cDNA. Mini-prepped plasmid was eth-

anol-precipitated to further concentrate and remove any possible endotoxins. For Sox2

overexpression, cells were seeded at 100,000 cells per 35 mm diameter plate in 2 mL of either LIF

+2i conditions or differentiation media (0.4 mM PD0325901 or 3 mM CHIR99021) for 1 day. 200 mL of

FBS was then added to each plate and 1.8 ug of plasmid was transfected using 5.4 mL of JetPrime

(Polyplus). Cells were incubated for 12 hr, then washed with PBS and replenished with fresh LIF+2i

or differentiation media. We then added 3 mL of Tet-Express mixed with 2.5 mL of Intensifier reagent

(Clontech). Cells were incubated in induction media for 24 hr, after which they were harvested and

fixed with 4% paraformaldehyde. Following fixation, they were permeabilized with ice-cold 100%

methanol and rehydrated with 1% BSA. Cells were then stained for Oct4, Otx2 and Sox2 and ana-

lyzed using flow cytometry. For Snai1 overexpression, cells were seeded at 100,000 cells per 35 mm

diameter plate in 2 mL of 3 mM CHIR99021 for 2.5 days. 200 mL of FBS was then added to each plate

and 1.8 mg of plasmid was transfected using 5.4 uL of JetPrime (Polyplus). Cells were incubated in

transfection media for 12 hr, then washed with PBS and replenished with fresh N2B27 basal media.

We then added 3 mL of Tet-Express mixed with 2.5 mL of Intensifier reagent (Clontech). Cells were

incubated in induction media for 24 hr, after which they were harvested and fixed with 4% parafor-

maldehyde. Following fixation, they were permeabilized with ice-cold 100% methanol and rehy-

drated with 1% BSA. Cells were then stained for Oct4 and T and analyzed using flow cytometry.

Jang et al. eLife 2017;6:e20487. DOI: 10.7554/eLife.20487 23 of 27

Research article Computational and Systems Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.20487


Fluorescence-activated cell sorting
Cells were trypsinized and fixed in suspension with formaldehyde (4% final concentration, diluted in

PBS), permeabilized with ice cold 100% methanol and blocked with 5% donkey serum for 1 hr.

Finally, cells are stained with primary antibodies diluted in PBS containing 1% BSA, and detected

using fluorescent-tagged secondary antibodies. Flow cytometry was performed on a BD FACSAria

flow cytometer equipped with 355 nm, 405 nm, 488 nm, 561 nm, and 637 nm lasers. The data

acquired were analyzed using custom programs written in MatLab.

Generation of mOTX2-Citrine reporter cell line
G4 mESCs, a 129S6 x B6 F1 hybrid line (Andras Nagy, University of Toronto) were maintained on

DR4 mouse embryonic fibroblasts (MEFs). These cells (1 � 107) were electroporated (Transfection

Buffer, Millipore; Bio-Rad set at 250 V and 500 mF) with 5 mg each TALEN plasmid (AI-CN301 and

AI-CN302 targeting TTCCAGGTTTTGTGAAGA and TTTAAAAATCACCCACAA, respectively) and

20 mg donor plasmid (AI-CN563). Following transfection, cells were placed on ice for 5 min, then

plated onto 3 � 10 cm dishes with MEFs. Beginning 30 hr after transfection, cells were selected with

hygromycin at 150 mg/mL for 3 days, then 100 mg/mL for an additional 4 days. Approximately 48

hygromycin-resistant colonies were picked and expanded for freezing and DNA preparation and

analysis. Five clones were identified with targeted integration by junction PCR (5’ junction primers:

aagagctaagtgccgccaacagc, catcagcccgtagccgaaggtag; 3’ junction primers: cacgctgaacttgtggccgttta,

cagctcacctccagcccaaggta). Following expansion and fluorescence-activated cell sorting (FACS),

Cerulean+ cells from two clones (2.1 and 2.4) were treated with Cre mRNA. After recovery and

expansion, the Cerulean- cells were enriched by FACS and single-cell cloned. The resulting subclones

were tested for removal of the selection cassette (primers: ggtgcctattctggtcgaactggatg,

atcacctctgctttgaaggccatgac). The TALENs were kindly provided by the Joung lab synthesized using

the FLASH method (Reyon et al., 2012). Computation and Modeling were performed using a cluster

at Harvard University.

Software
Calculations were performed using custom written MATLAB code (The Mathworks) on the Harvard

Research Computing Odyssey cluster. Code is available at https://github.com/furchtgott/sibilant

and https://github.com/sandeepc123/Gene_Regulatory_Network_Modeling respectively. Seurat was

done using the package provided in https://github.com/satijalab/seurat (Macosko et al., 2015).
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