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between HIF-1α and Notch 1 ICD. To further character-
ize this, a series of truncated HIF-1α constructs were
expressed in P19 cells together with a Notch ICD plas-
mid, finding that there are two interaction domains in
HIF-1α, one located in the N-terminal domain of HIF,
spanning residues 1–390, and the second between resi-
dues 390 and 531. Interestingly, cotransfection of HIF-
1α and Notch 1 ICD resulted in increased expression of
the 12XCSL-luc plasmid, both at normoxia and hyp-
oxia, but the truncated forms of HIF-1α failed to do so,
demonstrating that only a transcriptionally active form
of HIF-1α can increase Notch signaling. Finally, the au-
thors demonstrate with chromatin immunoprecipitation
assays that HIF-1α is recruited to the Hes Notch-respon-
sive promoter under activation of both Notch signaling
and low oxygen levels; they also show, using HIF-1α
mutant cell lines, that Notch transcriptional activation
during hypoxia requires HIF-1 function.

These findings suggest a new mode of action of HIF-
1α under hypoxia that differs from the canonical re-
sponse, in which it needs to dimerize with HIF-1β in
order to activate the transcription of hypoxia-respon-
sive genes. Based on these data, the authors propose
a model in which HIF-1α, once stabilized by hypoxia,
interacts with the Notch 1 ICD and is an active part of
the Notch 1 ICD/CSL transcriptional complex. There,
HIF-1α would contribute to stabilize Notch 1 ICD and
would enhance the transcriptional activity of the com-
plex through the recruitment of coactivators such as
CBP/p300. This model has strong similarities with the
mechanism of interactions between Notch and BMP/
TGF-β signaling pathways, in which the intracellular
mediators SMAD1 and SMAD3 interact with Notch 1
ICD, and there is no need of SMAD binding to DNA to
promote a response (Blokzijl et al., 2003; Dahlqvist et
al., 2003). Whether this model of interaction with Notch
is followed by other stimuli promoting stem cell dedif-
ferentiation remains to be elucidated.

Despite the evidence suggesting a major role for HIF-
1α in the interaction between hypoxia and Notch, the
involvement of other hypoxia-related molecules cannot
be ruled out. Whereas Notch regulation seems to be
independent of pVHL, immunoprecipitation experi-
ments showed FIH-1 physically interacts with Notch 1
ICD. Also, FIH-1 expression in P-19 cells decreased
12xCSL-luc activity when coexpressed with HIF-1α, but

FIH-1 in the regulation of Notch signaling; this will cer-
tainly be worthy of study in the future.

It would also be interesting to study the effect of
Notch in the hypoxic response. Even though Notch 1
ICD was not recruited to the promoter of the hypoxia
responsive gene PGK-1, the absence of the Notch li-
gand Serrate-1 in the culture caused a decrease in the
amount of HIF-1α bound to the promoter, and incuba-
tion with L-685,458 decreased the mRNA expression of
the HIF-1 target PGK-1 at normoxia and hypoxia. The
interaction between these two essential pathways thus
appears to be robust, and will likely spawn a great deal
of further effort to understand what was first approached
in embryo cultures more than 30 years ago: the role
played by oxygen in regulating developmental fate.
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Tracing the Sources
of Cellular Variation

As the adage says, variety is the spice of life, and
despite our best attempts, cells, even those with the
same genome, never seem to behave the same. By
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combining mathematical and experimental analyses,
olman-Lerner and colleagues propose, in a recent
ssue of Nature, a method to delicately unravel the
ources of this variation (Colman-Lerner et al., 2005).
pplying their technique to the pheromone response

n budding yeast, they show that much of the ob-
erved variation originates from cell cycle effects and
s dependent on levels of pathway input.
Ultimately, cell-to-cell differences are caused by the
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stochastic nature of biochemical reactions. Reactants
come together by diffusion, their motion driven by rapid
and frequent collisions with other molecules. Once to-
gether, these same collisions alter reactant internal en-
ergies, and so their propensity to react. Both effects
cause individual reaction events to happen randomly
and drive the overall reaction process stochastic.

Is this stochasticity, or “noise,” important in vivo? In-
tuitively, stochasticity is only significant when mean
numbers of molecules are low; then, individual reac-
tions, which at most change the numbers of molecules
by one or two, matter. Low numbers are not uncommon
intracellularly; gene copy number is typically one or
two, and transcription factors, at least for bacteria, fre-
quently number in the tens. However, unambiguously
measuring stochasticity can be challenging. Naively,
one could place green fluorescent protein (GFP) down-
stream of a promoter that is activated by the system
of interest. By measuring the variation in fluorescence
across a population of cells, the noise in the system
could be estimated. However, every biochemical reac-
tion is potentially noisy. Fluorescence variation could
be due to noise in the process under study or could
result from the general background “hum” of stochas-
ticity: stochastic effects in ribosome synthesis lead to
different numbers of ribosomes and so to differences
in gene expression in each cell, stochastic effects in
the cell cycle machinery desynchronize the population,
stochastic effects in signaling networks make each
cell’s response its own, and so on.

Variation has, then, two classes: intrinsic stochastic-
ity, which arises from fluctuations in the reactions of the
system of interest, and extrinsic stochasticity, which
originates from fluctuations in other cellular processes
that interact with this system (Swain et al., 2002; Elo-
witz et al., 2002). To determine whether variation is in-
trinsic or extrinsic, it helps to visualize an identical sec-
ond copy of the system, present in the same cell and
exposed to the same intracellular environment. For ex-
ample, take a simple system like constitutive expres-
sion. Imagine another copy of the gene, with an iden-
tical promoter and ribosome binding site, present in
each cell. Variation in the number of free ribosomes will
equally affect both system copies; expression from
both genes will fall if the number of free ribosomes falls,
and will rise if the number of free ribosomes rises—an
extrinsic variation. Variation in the number of actively
translating ribosomes, however, is intrinsic; it can be
varied independently for each gene system. The same
technique works experimentally (Elowitz et al., 2002):
Two distinguishable alleles of GFP are placed down-
stream of identical promoters. The intrinsic noise is
given by the variation in the difference in concentration
of the two alleles, the total noise is determined from the
variation in either one of the alleles, and then a simple
relationship between these measurements gives extrinsic
noise (Swain et al., 2002). Stochasticity in gene expres-
sion has thus been quantified in both bacteria (Elowitz
et al., 2002) and yeast (Raser and O’Shea, 2004).

The work by Roger Brent’s group cleverly extends
this technique and applies it to an endogenous cellular
network, the yeast pheromone pathway. In budding
yeast, pheromone activates a G protein-coupled recep-
tor, the MAP kinase pathway, and ultimately a transcrip-
tion factor, Ste12. By placing yellow fluorescent protein
(YFP) downstream of a Ste12-activated promoter, Col-

man-Lerner et al. (2005) have a read-out for path-way
activity. Pheromone response is funneled through two
subsystems: a signaling pathway subsystem and a
gene expression subsystem, which synthesizes repor-
ter. Variation in observed fluorescence is therefore set
by intrinsic and extrinsic stochasticity in both the path-
way and the expression subsystems.

By placing cyan fluorescent protein (CFP) downstream
of an identical copy of the Ste12 activated promoter,
Colman-Lerner and colleagues used the variation in the
difference in the CFP and YFP levels to quantify intrinsic
stochasticity in the expression subsystem. To go further
than previous work, however, they created a new strain
with CFP placed downstream of another promoter en-
tirely unconnected to the pheromone response. They
realized that variation in the difference between CFP
and YFP levels in this strain is not only determined by
the intrinsic stochasticity in the gene expression sub-
systems, but also by the stochasticity in each pathway
subsystem. By creating a collection of strains, each
having CFP and YFP downstream of carefully chosen
combinations of promoters, they subdivided and quan-
tified total observed variation into three contributions:
total stochasticity in the pathway subsystem, and both
intrinsic and extrinsic stochasticities in the gene ex-
pression subsystem.

What then generates variation? Colman-Lerner et al.
(2005) determined that both subsystems contributed
significantly. Interestingly, however, they find that their
relative importance shifts as the strength of pathway
input changes. At lower pheromone concentrations,
stochasticity in the pathway subsystem contributes
three times as much to total variation as it does at
higher pheromone concentrations. In agreement with
other studies (Elowitz et al., 2002; Raser and O’Shea,
2004; Rosenfeld et al., 2005; Pedraza and van Oude-
naarden, 2005), intrinsic gene expression noise played
a minor role.

While quantifying the different contributions to varia-
tion is important, a greater challenge is to discover spe-
cific sources of stochasticity. The Brent group found
that inhibiting cyclin-dependent kinase Cdc28 caused
variation to almost halve in cells exposed to high pher-
omone levels. As cells respond variably to pheromones
at different stages of the cell cycle, differences in cell
cycle position could increase variation in pheromone
response. Similar results also hold for bacteria (Rosen-
feld et al., 2005), where correcting for desynchroniza-
tion of cells significantly reduced noise in the output of
a simple gene network.

Their study raises several intriguing questions. Once
the role of Cdc28 in setting stochasticity is factored
out, where is the rest of the variability being generated?
What are both the total and phosphorylated protein
concentrations of the mating pathway components at
different pheromone concentrations? Does their cellu-
lar location influence pathway stochasticity? The prin-
cipal reporter promoter used, PRM1, normally drives a
membrane protein that localizes to the schmoo tip (Hei-
man and Walter, 2000; White and Rose, 2001). What
biological consequence does the variable expression
of PRM1 have on the mating efficiency of cells? If cells
expressing low levels of PRM1 mate fine, then the vari-
ability of pheromone response seen through this repor-
ter could be of little biological significance. Stochastic-
ity is often postulated as both a hindrance to reliable
cellular information processing and as a potential re-
source for cells to exploit. The onus is now not to fur-

ther demonstrate the existence of stochasticity, but to
pin-point its biological relevance.



Developmental Cell
578
Sharad Ramanathan1,2 and Peter S. Swain3

1Bauer Center for Genomics Research
Harvard University
Cambridge, Massachusetts 02138
2Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974
3Centre for Non-Linear Dynamics
Department of Physiology
McGill University
3655 Promenade Sir William Osler
Montreal, Quebec H3G 1Y6
Canada

S

C
E

E
e

H

P
1

R

R
(

S
S

W

elected Reading

olman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O.,
ndy, D., Pesce, C.G., and Brent, R. (2005). Nature 437, 699–706.

lowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Sci-
nce 297, 1183–1186.

eiman, M.G., and Walter, P. (2000). J. Cell Biol. 151, 719–730.

edraza, J.M., and van Oudenaarden, A. (2005). Science 307,
965–1969.

aser, J.M., and O’Shea, E.K. (2004). Science 304, 1811–1814.

osenfeld, N., Young, J.W., Alon, U., Swain, P.S., and Elowitz, M.B.
2005). Science 307, 1962–1965.

wain, P.S., Elowitz, M.B., and Siggia, E.D. (2002). Proc. Natl. Acad.
ci. USA 99, 12795–12800.

hite, J.M., and Rose, M.D. (2001). Curr. Biol. 11, R16–R20.


	Tracing the Sources of Cellular Variation
	Selected Reading


