90 research outputs found

    Asymmetrical Raman Scattering by Water and Sulphuric Acid

    Get PDF

    Darcy-Brinkman free convection about a wedge and a cone subjected to a mixed thermal boundary condition

    Get PDF
    The Darcy-Brinkman free convection near a wedge and a cone in a porous medium with high porosity has been considered. The surfaces are subjected to a mixed thermal boundary condition characterized by a parameter m; m=0, 1, ∞ correspond to the cases of prescribed temperature, prescribed heat flux and prescribed heat transfer coefficient respectively. It is shown that the solutions for different m are dependent and a transformation group has been found, through which one can get solution for any m provided solution for a particular value of m is known. The effects of Darcy number on skin friction and rate of heat transfer are analyzed

    DAS STRAHLUNGSVERMÖGEN DER DIESELMOTORISCHEN FLAMME

    Get PDF

    Effect of Complex Formation on the Intensities of Raman Lines

    Get PDF

    Stability of binary complexes of Pb(II), Cd(II) and Hg(II) with maleic acid in TX100-water mixtures

    Get PDF
    Binary complexes of maleic acid with toxic metal ions such as Pb(II), Cd(II) and Hg(II) have been studied in 0.0-2.5% v/v tritonX-100 (TX100) - water media at 303 K  at an ionic strength of 0.16 M. The active forms of the ligand are LH2, LH- and L2-. The derived ‘best fit’ chemical speciation models are based on crystallographic R-factors, χ2 and Skewness and Kurtosis factors. The predominant species formed are of the type ML2, ML2H and ML3. The trend in variation of complex stability constants with change in the mole fraction of the medium is explained on the basis of prevailing electrostatic and non-electrostatic forces. The species distribution as a function of pH at different compositions of TX100-water mixtures and plausible speciation equilibria are presented and discussed. KEY WORDS: Maleic acid, TritonX-100, Toxic metal ions, Mole fraction, Binary complexes Bull. Chem. Soc. Ethiop. 2014, 28(3), 383-391.DOI: http://dx.doi.org/10.4314/bcse.v28i3.

    Change in the Shape of the No3 Ion During the Formation of a Hydrate in Aqueous Solutions

    Get PDF

    In situ electrochemical characterization of a microbial fuel cell biocathode running on wastewater

    Get PDF
    Funding Information: FCT?Funda??o para a Ci?ncia e a Tecnologia, Portugal (Grant number grant No. FRH/BP D/33864/2009). This work was supported by the Associate Laboratory for Green Chemistry (LAQV) which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). Acknowledgments: S.V.R. acknowledges the financial support from FCT (Portuguese Foundation for Science and Technology) for Postdoctoral Research grant No. FRH/BPD/33864/2009. This work was supported by the Associate Laboratory for Green Chemistry?LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).The electrochemical features of microbial fuel cells’ biocathodes, running on wastewater, were evaluated by cyclic voltammetry. Ex situ and in situ electrochemical assays were performed and the redox processes associated with the presence of microorganisms and/or biofilms were attained. Different controls using sterile media (abiotic cathode microbial fuel cell) and membranes covering the electrodes were performed to evaluate the source of the electrochemistry response (surface biofilms vs. biotic electrolyte). The bacteria presence, in particular when biofilms are allowed to develop, was related with the enhanced active redox processes associated with an improved catalytic activity, namely for oxygen reduction, when compared with the results attained for an abiotic microbial fuel cell cathode. The microbial main composition was also attained and is in agreement with other reported studies. The current study aims contributing to the establishment of the advantages of using biocathodes rather than abiotic, whose conditions are frequently harder to control and to contribute to a better understanding of the bioelectrochemical processes occurring on the biotic chambers and the electrode surfaces.publishersversionpublishe

    Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis

    Get PDF
    FRH/BPD/33864/2009 UIDB/50006/2020 UIDP/50006/2020In the present work, power generation and substrate removal efficiencies of long-term operated microbial fuel cells, containing abiotic cathodes and biocathodes, were evaluated for 220 days. Among the two microbial fuel cell (MFC) types, the one containing biocathode showed higher power density (54 mW/m2), current density (122 mA/m2) coulombic efficiency (33%), and substrate removal efficiency (94%) than the abiotic cathode containing MFC. Voltammetric analysis also witnessed higher and sustainable electron discharge for the MFC with biocathode, when compared with the abiotic cathode MFC. Over the tested period, both MFC have shown a cell voltage drop, after 150 and 165, days, for the MFC with biocathode and abiotic cathodes, respectively. Polymerase chain reaction (PCR) based restriction fragment length polymorphism (RFLP) analysis identified 281 clones. Bacteria belonging to Acinetobacter, Acidovorax, Pseudomonas and Burkholderia were observed in the abiotic cathode MFC. Bacteria belonging to Geobacter, Cupriavidus and Acidobacteria were observed in the biocathode MFC. Almost similar types of archaea (Methanosarcinales, Methanolinea, Nitrososphaera and Methanomicrobiales) were observed in both MFCs.publishersversionpublishe

    Design and Optimization of Microbial Fuel Cells and Evaluation of a New Air-Breathing Cathode Based on Carbon Felt Modified with a Hydrogel—Ion Jelly®

    Get PDF
    Funding Information: This research was funded by Fundação para a Ciência e a Tecnologia projects DSAIPA/DS/0117/2020, UIDB/04565/2020, and UIDP/04565/2020, by the Associate Laboratory Institute for Health and Bioeconomy—i4HB project LA/P/0140/2020. This work was supported by the Associate Laboratory for Green Chemistry—LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020). We also thank Fundação para a Ciência e Tecnologia (FCT) for funding (SFRH/BD/77568/2011 (R.N.L.C.); SFRH/BPD/80293/2011 (R.M.A.)). C.M.C. acknowledges FCT for the Ciência 2008 Program; S.V.R. acknowledges the financial support from FCT (Portuguese Foundation for Science and Technology) for a postdoctoral research grant (FRH/BPD/33864/2009). This work was supported by the Associate Laboratory for Green Chemistry—LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020); the Institute for Bioengineering and Biosciences—iBB, financed by FCT (UID/BIO/04565/2013); and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317). Publisher Copyright: © 2023 by the authors.The increased demand for alternative sustainable energy sources has boosted research in the field of fuel cells (FC). Among these, microbial fuel cells (MFC), based on microbial anodes and different types of cathodes, have been the subject of renewed interest due to their ability to simultaneously perform wastewater treatment and bioelectricity generation. Several different MFCs have been proposed in this work using different conditions and configurations, namely cathode materials, membranes, external resistances, and microbial composition, among other factors. This work reports the design and optimization of MFC performance and evaluates a hydrogel (Ion Jelly®) modified air-breathing cathode, with and without an immobilized laccase enzyme. This MFC configuration was also compared with other MFC configuration performances, namely abiotic and biocathodes, concerning wastewater treatment and electricity generation. Similar efficiencies in COD reduction, voltage (375 mV), PD (48 mW/m2), CD (130 mA/m2), and OCP (534 mV) were obtained. The results point out the important role of Ion Jelly® in improving the MFC air-breathing cathode performance as it has the advantage that its electroconductivity properties can be designed before modifying the cathode electrodes. The biofilm on MFC anodic electrodes presented a lower microbial diversity than the wastewater treatment effluent used as inocula, and inclusively Geobacteracea was also identified due to the high microbial selective niches constituted by MFC systems.publishersversionpublishe
    corecore