38 research outputs found

    Scanning Electron Microscopy Core

    Get PDF
    Department/Unit poster (NCNPR). Corresponding author: Vijayasankar Raman ([email protected])https://egrove.olemiss.edu/pharm_annual_posters_2022/1017/thumbnail.jp

    Scanning Electron Microscopy Core

    Get PDF
    Presenter: Vijayasankar Ramanhttps://egrove.olemiss.edu/pharm_annual_posters_2021/1007/thumbnail.jp

    Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery

    Full text link
    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFSfree) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFSfree, or a combination of DFSfree+DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFSfree+DFS:IR(1:1)(1 + 1) was twice that of only DFS:IR(1:1) film. In vivo, DFS solution and DFS:IR(1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFSfree and DFSfree+DFS:IR(1:1)(3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFSfree formulation. DFSfree+DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics

    Eucalyptus cinerea: Microscopic Profile, Chemical Composition of Essential Oil and its Antioxidant, Microbiological and Cytotoxic Activities

    Get PDF
    Eucalyptus species possess anti-inflammatory, antifungal, antibacterial, and insecticidal properties. In this study, the chemical composition and biological activities of Eucalyptus cinerea essential oil (EO) and the leaf and stem anatomy were investigated. EO was extracted by Clevenger apparatus and the compounds were identified by GC/MS. The antioxidant activity was evaluated by DPPH, ABTS, and reducing phosphomolybdenum complex. Broth microdilution was used to determine antimicrobial activity. Cytotoxicity was verified against HeLa, HRT-18, and Calu-3 cells by MTT assay. The cytotoxic mechanism was studied by cell DNA content, cell cycle, and DNA fragmentation. The microscopic analyzes of the leaves and the stems were performed by light microscopy, field emission scanning electron microscopy, and energydispersive X-ray spectroscopy. The main constituent of the EO was 1,8-cineole (55.24%). The EO showed low antioxidant and antimicrobial activities. Calu-3 cells showed a significant reduction in viability with IC50of 689.79 ± 29.34 μg/mL. EO at 1000 μg/mL decreased the DNA content in Jurkat cells. In general, EO increased cell percentage in sub-G0 and S phases with concomitant reduction of cell percentage in G0/G1 and G2/M phases and provided DNA fragmentation of 29.73%. Anatomical and micromorphological features of the leaves and stems can help in the species identification and its differentiation from other Eucalyptus species

    Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO\u3csub\u3e2\u3c/sub\u3e Adsorption

    Get PDF
    © Copyright © 2020 Chatterjee, Sajjadi, Chen, Mattern, Hammer, Raman and Dorris. The present study examined the effect of pyrolysis temperature on the physicochemical properties of biochar, activation process and carbon capture. Two different categories of biochars were synthesized from herbaceous (miscanthus and switchgrass) and agro-industrial (corn stover and sugarcane bagasse) feedstock under four different pyrolysis temperatures −500, 600, 700, and 800°C. The synthesized biochars underwent sono-amination activation comprising low-frequency acoustic treatment followed by amine functionalization to prepare adsorbents for CO2 capture. The highest increment (200%) of CO2 capture capacity was observed for sono-aminated samples prepared at 600 and 700°C (maximum improvement for miscanthus), while biochars synthesized at 500 and 800°C demonstrated comparatively lesser increment in adsorption capacities that falls in the range of 115–151 and 127–159%, respectively compared to 600 and 700°C. The elevated pyrolysis temperature (particularly 600 and 700°C) resulted in increased %C and %ash contents and reduced %N contents with enhancement of micro surface area and pore volume. Thus, the superior adsorption capacity of miscanthus (at 600 and 700°C) can be attributed to their large surface areas (303–325 m2/g), high carbon contents (82–84%), and low ash contents (4–5%), as well as %N contents after sono-amination that was twice that of raw char

    Insecticidal and biting deterrent activities of magnolia grandiflora essential oils and selected pure compounds against aedes aegypti

    Get PDF
    © 2020 by the authors. In our natural products screening program for mosquitoes, we tested essential oils extracted from different plant parts of Magnolia grandiflora L. for their insecticidal and biting deterrent activities against Aedes aegypti. Biting deterrence of seeds essential oil with biting deterrence index value of 0.89 was similar to N,N-diethyl-3-methylbenzamide (DEET). All the other oils were active above the solvent control but the activity was significantly lower than DEET. Based on GC-MS analysis, three pure compounds that were only present in the essential oil of seed were further investigated to identify the compounds responsible for biting deterrent activity. 1-Decanol with PNB value of 0.8 was similar to DEET (PNB = 0.8), whereas 1-octanol with PNB value of 0.64 showed biting deterrence lower than 1-decanol and DEET. The activity of 1-heptanol with PNB value of 0.36 was similar to the negative control. Since 1-decanol, which was 3.3% of the seed essential oil, showed biting deterrence similar to DEET as a pure compound, this compound might be responsible for the activity of this oil. In in vitro A & K bioassay, 1-decanol with MED value of 6.25 showed higher repellency than DEET (MED = 12.5). Essential oils of immature and mature fruit showed high toxicity whereas leaf, flower, and seeds essential oils gave only 20%, 0%, and 50% mortality, respectively, at the highest dose of 125 ppm. 1-Decanol with LC50 of 4.8 ppm was the most toxic compound

    Investigations on the morpho-anatomy and histochemistry of the European mistletoe: Viscum album L. subsp. album

    Get PDF
    Viscum album L. (Santalaceae) is an important medicinal plant traditionally used to treat several diseases, including cancer therapy. This paper provides detailed morpho‑anatomical characteristics of the leaves, stems and berries of Viscum album subsp. album growing as hemi‑parasite on the branches of Malus domestica (Suckow) Borkh. (Rosaceae) to aid species identification and botanical characterization. Additionally, for the first time, microchemical analyses of all tissues and Energy Dispersive X‑Ray Spectroscopy analyses of the calcium oxalate crystals are provided for the first time. The plant features leathery presents green leaves with parallel veins, small yellow unisexual flowers in 3‑flowered cymes, and the dioecious inflorescences usually consist of three flowers, with female flowers generating white fleshy berries, in which a seed is embedded in the mucilaginous mesocarp, normally containing two embryos. Anatomically, the analyzed leaves were isobilateral and amphistomatic, and showed straight anticlinal epidermal cell walls, thick cuticles with epicuticular wax crystalloids, and paracytic stomata. The midrib is flat on both sides and has a single vascular bundle, whereas the strongly shortened petiole is concave‑convex in shape and contains five bundles. The stems show a primary structure with a ring of nine vascular bundles enclosing the pith. Calcium oxalate druses and cubic and quadrangular prisms were observed in different plant parts. The results of this study provide new microscopy information that can help in the authentication of mistletoe raw materials

    Schinus molle: anatomy of leaves and stems, chemical composition and insecticidal activities of volatile oil against bed bug (Cimex lectularius)

    Get PDF
    © 2019 by the authors The investigation of the constituents that were isolated from Turnera diffusa (damiana) for their inhibitory activities against recombinant human monoamine oxidases (MAO-A and MAO-B) in vitro identified acacetin 7-methyl ether as a potent selective inhibitor of MAO-B (IC50 = 198 nM). Acacetin 7-methyl ether (also known as 5-hydroxy-40, 7-dimethoxyflavone) is a naturally occurring flavone that is present in many plants and vegetables. Acacetin 7-methyl ether was four-fold less potent as an inhibitor of MAO-B when compared to acacetin (IC50 = 50 nM). However, acacetin 7-methyl ether was \u3e500-fold selective against MAO-B over MAO-A as compared to only two-fold selectivity shown by acacetin. Even though the IC50 for inhibition of MAO-B by acacetin 7-methyl ether was ~four-fold higher than that of the standard drug deprenyl (i.e., SelegilineTM or ZelaparTM, a selective MAO-B inhibitor), acacetin 7-methyl ether’s selectivity for MAO-B over MAO-A inhibition was greater than that of deprenyl (\u3e500- vs. 450-fold). The binding of acacetin 7-methyl ether to MAO-B was reversible and time-independent, as revealed by enzyme-inhibitor complex equilibrium dialysis assays. The investigation on the enzyme inhibition-kinetics analysis with varying concentrations of acacetin 7-methyl ether and the substrate (kynuramine) suggested a competitive mechanism of inhibition of MAO-B by acacetin 7-methyl ether with Ki value of 45 nM. The docking scores and binding-free energies of acacetin 7-methyl ether to the X-ray crystal structures of MAO-A and MAO-B confirmed the selectivity of binding of this molecule to MAO-B over MAO-A. In addition, molecular dynamics results also revealed that acacetin 7-methyl ether formed a stable and strong complex with MAO-B. The selective inhibition of MAO-B suggests further investigations on acacetin 7-methyl as a potential new drug lead for the treatment of neurodegenerative disorders, including Parkinson’s disease

    Microscopic and Microchemical Characterization of Leaves and Stems of Acmella bellidioides

    Get PDF
    Abstract Acmella bellidioides (Asteraceae), commonly known as "arnica-do-campo", is a South American native medicinal plant mainly found in Brazil, Argentina, Uruguay and Paraguay. The indigenous people in these regions use the flowers of this plant to treat diseases of the digestive, musculoskeletal and sensory systems. Many Acmella species are morphologically similar, and there are a few anatomical studies available in the literature that can be used to identify and distinguish them. Several other members of Asteraceae, such as Calea uniflora, Chaptalia nutans, Porophyllum ruderale, Pseudobrickellia brasiliensis and Solidago chilensis, are also called "arnica-do-campo" or "arnica". Applying the same common name to several other species makes it difficult to identify the plant correctly and allows it to be more easily adulterated. The present study characterizes A. bellidioides using microscopy and microchemical techniques to provide pharmacobotanical data to support the authentication of the species. The notable anatomical markers identified in A. bellidioides are hypostomatic leaves, anomocytic stomata, peltate glandular trichomes on the leaf abaxial surface, midrib vascular system with three collateral bundles in an open arch, and the presence of prismatic crystals in the leaves and stems. These characteristics can help species identification and differentiation of A. bellidioides from other Acmella species and Asteraceae species known as arnica-do-campo
    corecore