8,115 research outputs found

    Initial condition effect on pressure waves in an axisymmetric jet

    Get PDF
    A pair of microphones (separated axially by 5.08 cm and laterally by 1.3 cm) are placed on either side of the jet centerline to investigate coherent pressure fluctuations in an axisymmetric jet at Strouhal numbers less than unity. Auto-spectra, transfer-function, and coherence measurements are made for a tripped and untripped boundary layer initial condition. It was found that coherent acoustic pressure waves originating in the upstream plenum chamber propagate a greater distance downstream for the tripped initial condition than for the untripped initial condition. In addition, for the untripped initial condition the development of the coherent hydrodynamic pressure waves shifts downstream

    Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice

    Full text link
    We experimentally investigate diffraction of a Rb-87 Bose-Einstein condensate from a 1D optical lattice. We use a range of lattice periods and timescales, including those beyond the Raman-Nath limit. We compare the results to quantum mechanical and classical simulations, with quantitative and qualitative agreement, respectively. The classical simulation predicts that the envelope of the time-evolving diffraction pattern is shaped by caustics: singularities in the phase space density of classical trajectories. This behavior becomes increasingly clear as the lattice period grows.Comment: 7 pages, 6 figure

    Breeding Brassica napus for Shatter Resistance

    Get PDF

    Topological phases and topological entropy of two-dimensional systems with finite correlation length

    Full text link
    We elucidate the topological features of the entanglement entropy of a region in two dimensional quantum systems in a topological phase with a finite correlation length ξ\xi. Firstly, we suggest that simpler reduced quantities, related to the von Neumann entropy, could be defined to compute the topological entropy. We use our methods to compute the entanglement entropy for the ground state wave function of a quantum eight-vertex model in its topological phase, and show that a finite correlation length adds corrections of the same order as the topological entropy which come from sharp features of the boundary of the region under study. We also calculate the topological entropy for the ground state of the quantum dimer model on a triangular lattice by using a mapping to a loop model. The topological entropy of the state is determined by loop configurations with a non-trivial winding number around the region under study. Finally, we consider extensions of the Kitaev wave function, which incorporate the effects of electric and magnetic charge fluctuations, and use it to investigate the stability of the topological phase by calculating the topological entropy.Comment: 17 pages, 4 figures, published versio

    TGF-β Regulation by Emilin1: New Links in the Etiology of Hypertension

    Get PDF
    Hypertension is a complex disease influenced by multiple genetic and environmental factors. The TGF-β signaling pathway has a long recognized role in blood pressure homeostasis. In this issue of Cell, Zacchigna et al. (2006) report that the secreted protein Emilin1 is a negative regulator of TGF-β signaling. Emilin1 knockout mice display elevated blood pressure due to increased TGF-β signaling in the vasculature

    MAP Kinase Modules: Many Roads Home

    Get PDF
    AbstractAll known MAP kinase cascades have a simple three tier linear architecture; yet despite their diverse range of inputs, they provide exquisitely precise and sensitive responses. Recent studies have shown that differential use of pathway components enhances pathway specificity, facilitates signal integration and confers output selectivity

    Underfunded Public Employee Pension Plans: Scope of the Problem in the South and Southwest

    Get PDF
    K.K. Raman is an Associate Professor of Accounting at North Texas State University. Sharon H. Garrison is an Assistant Professor of Finance at North Texas State University

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl
    • …
    corecore