101 research outputs found

    Lutzomyia longipalpis s.l. in Brazil and the impact of the Sao Francisco River in the speciation of this sand fly vector

    Get PDF
    Lutzomyia longipalpis s.l. (Diptera: Psychodidae) is the principal vector of Leishmania infantum chagasi in the Americas, and constitutes a complex of species. Various studies have suggested an incipient speciation process based on behavioral isolation driven by the chemotype of male sexual pheromones. It is well known that natural barriers, such as mountains and rivers can directly influence population divergence in several organisms, including insects. In this work we investigated the potential role played by the Sao Francisco River in eastern Brazil in defining the current distribution of Lu. longipalpis s.l. Our studies were based on analyses of polymorphisms of the cytochrome b gene (cyt b) sequences from Lu. longipalpis s.l. available in public databases, and from additional field-caught individuals. Altogether, 9 distinct populations and 89 haplotypes were represented in the analyses. Lu. longipalpis s.l. populations were grouped according to their distribution in regards to the 10°S parallel: north of 10°S (<10°S); and south of 10°S (>10°S). Our results suggest that although no polymorphisms were fixed, moderate genetic divergences were observed between the groups analyzed (i.e., FST = 0.184; and Nm = 2.22), and were mostly driven by genetic drift. The population divergence time estimated between the sand fly groups was about 0.45 million years (MY), coinciding with the time of the change in the course of the Sao Francisco River, during the Mindel glaciation. Overall, the polymorphisms on the cyt b haplotypes and the current speciation process detected in Lu. longipalpis s.l. with regards to the distribution of male sexual pheromones suggest a role of the Sao Francisco River as a significant geographical barrier in this process

    Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sandflies, the blood meal is responsible for the induction of several physiologic processes that culminate in egg development and maturation. During blood feeding, infected sandflies are also able to transmit the parasite Leishmania to a suitable host. Many blood-induced molecules play significant roles during Leishmania development in the sandfly midgut, including parasite killing within the endoperitrophic space. In this work, we randomly sequenced transcripts from three distinct high quality full-length female <it>Phlebotomus papatasi </it>midgut-specific cDNA libraries from sugar-fed, blood-fed and <it>Leishmania major</it>-infected sandflies. Furthermore, we compared the transcript expression profiles from the three different cDNA libraries by customized bioinformatics analysis and validated these findings by semi-quantitative PCR and real-time PCR.</p> <p>Results</p> <p>Transcriptome analysis of 4010 cDNA clones resulted in the identification of the most abundant <it>P. papatasi </it>midgut-specific transcripts. The identified molecules included those with putative roles in digestion and peritrophic matrix formation, among others. Moreover, we identified sandfly midgut transcripts that are expressed only after a blood meal, such as microvilli associated-like protein (<it>PpMVP1</it>, <it>PpMVP2 </it>and <it>PpMVP3</it>), a peritrophin (<it>PpPer1</it>), trypsin 4 (<it>PpTryp4</it>), chymotrypsin <it>PpChym2</it>, and two unknown proteins. Of interest, many of these overabundant transcripts such as <it>PpChym2</it>, <it>PpMVP1</it>, <it>PpMVP2, PpPer1 </it>and <it>PpPer2 </it>were of lower abundance when the sandfly was given a blood meal in the presence of <it>L. major</it>.</p> <p>Conclusion</p> <p>This tissue-specific transcriptome analysis provides a comprehensive look at the repertoire of transcripts present in the midgut of the sandfly <it>P. papatasi</it>. Furthermore, the customized bioinformatic analysis allowed us to compare and identify the overall transcript abundance from sugar-fed, blood-fed and Leishmania-infected sandflies. The suggested upregulation of specific transcripts in a blood-fed cDNA library were validated by real-time PCR, suggesting that this customized bioinformatic analysis is a powerful and accurate tool useful in analysing expression profiles from different cDNA libraries. Additionally, the findings presented in this work suggest that the Leishmania parasite is modulating key enzymes or proteins in the gut of the sandfly that may be beneficial for its establishment and survival.</p

    The Role of Inflammatory, Anti-Inflammatory, and Regulatory Cytokines in Patients Infected with Cutaneous Leishmaniasis in Amazonas State, Brazil

    Get PDF
    The authors discuss in this paper the role of inflammatory, anti-inflammatory, and regulatory cytokines in patients infected with different species of Leishmania in Amazonas State, Brazil. A comparative analysis was made of serum concentrations of these cytokines in the peripheral blood of 33 patients infected with cutaneous leishmaniasis. The isolates were identified as Leishmania guyanensis, L. naiffi, and L. amazonensis. Most (64%) of the patients were male ranging in age from 18 to 58 years. Protein expression profiles of IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α, and IL-17 cytokines were shown to vary significantly between infected and noninfected (control group) individuals and according to the Leishmania species. Infection caused by L. guyanensis accounted for 73% of the cases and patients with this parasite also showed higher concentrations of IL-2, IFN-γ, IL-4, and IL-17 when compared to infection by L. amazonensis. Patients with infection caused by L. naiffi showed higher concentration of the cytokines analyzed when compared to uninfected patients; however, there was no statistically significant difference with the other species analyzed

    The Role of Inflammatory, Anti-Inflammatory, and Regulatory Cytokines in Patients Infected with Cutaneous Leishmaniasis in Amazonas State, Brazil

    Get PDF
    The authors discuss in this paper the role of inflammatory, anti-inflammatory, and regulatory cytokines in patients infected with different species of Leishmania in Amazonas State, Brazil. A comparative analysis was made of serum concentrations of these cytokines in the peripheral blood of 33 patients infected with cutaneous leishmaniasis. The isolates were identified as Leishmania guyanensis, L. naiffi, and L. amazonensis. Most (64%) of the patients were male ranging in age from 18 to 58 years. Protein expression profiles of IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α, and IL-17 cytokines were shown to vary significantly between infected and noninfected (control group) individuals and according to the Leishmania species. Infection caused by L. guyanensis accounted for 73% of the cases and patients with this parasite also showed higher concentrations of IL-2, IFN-γ, IL-4, and IL-17 when compared to infection by L. amazonensis. Patients with infection caused by L. naiffi showed higher concentration of the cytokines analyzed when compared to uninfected patients; however, there was no statistically significant difference with the other species analyzed. © 2014 Thaís Tibery Espir et al

    The Role of Inflammatory, Anti-Inflammatory, and Regulatory Cytokines in Patients Infected with Cutaneous Leishmaniasis in Amazonas State, Brazil

    Get PDF
    The authors discuss in this paper the role of inflammatory, anti-inflammatory, and regulatory cytokines in patients infected with different species of Leishmania in Amazonas State, Brazil. A comparative analysis was made of serum concentrations of these cytokines in the peripheral blood of 33 patients infected with cutaneous leishmaniasis. The isolates were identified as Leishmania guyanensis, L. naiffi, and L. amazonensis. Most (64%) of the patients were male ranging in age from 18 to 58 years. Protein expression profiles of IL-2, IL-4, IL-6, IL-10, IFN-, TNF-, and IL-17 cytokines were shown to vary significantly between infected and noninfected (control group) individuals and according to the Leishmania species. Infection caused by L. guyanensis accounted for 73% of the cases and patients with this parasite also showed higher concentrations of IL-2, IFN-, IL-4, and IL-17 when compared to infection by L. amazonensis. Patients with infection caused by L. naiffi showed higher concentration of the cytokines analyzed when compared to uninfected patients; however, there was no statistically significant difference with the other species analyzed

    Expression plasticity of Phlebotomus papatasi salivary gland genes in distinct ecotopes through the sand fly season

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sand fly saliva can drive the outcome of <it>Leishmania </it>infection in animal models, and salivary components have been postulated as vaccine candidates against leishmaniasis. In the sand fly <it>Phlebotomus papatasi</it>, natural sugar-sources modulate the activity of proteins involved in meal digestion, and possibly influence vectorial capacity. However, only a handful of studies have assessed the variability of salivary components in sand flies, focusing on the effects of environmental factors in natural habitats. In order to better understand such interactions, we compared the expression profiles of nine <it>P. papatasi </it>salivary gland genes of specimens inhabiting different ecological habitats in Egypt and Jordan and throughout the sand fly season in each habitat.</p> <p>Results</p> <p>The majority of investigated genes were up-regulated in specimens from Swaymeh late in the season, when the availability of sugar sources is reduced due to water deprivation. On the other hand, these genes were not up-regulated in specimens collected from Aswan, an irrigated area less susceptible to drought effects.</p> <p>Conclusion</p> <p>Expression plasticity of genes involved with vectorial capacity in disease vectors may play an important epidemiological role in the establishment of diseases in natural habitats.</p

    Profiling of human acquired immunity against the salivary proteins of Phlebotomus papatasi reveals clusters of differential immunoreactivity

    Get PDF
    Citation: Geraci, Nicholas S., Rami M. Mukbel, Michael T. Kemp, Mariha N. Wadsworth, Emil Lesho, Gwen M. Stayback, Matthew M. Champion, et al. 2014. “Profiling of Human Acquired Immunity Against the Salivary Proteins of Phlebotomus Papatasi Reveals Clusters of Differential Immunoreactivity.” The American Journal of Tropical Medicine and Hygiene 90 (5): 923–38. https://doi.org/10.4269/ajtmh.13-0130.Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents
    corecore