143 research outputs found

    Some observations on the trend of zooplankton and Its probable influence on local pelagic fisheries at Colachel during 1973-74

    Get PDF
    The zooplankton standing crop showed three peaks of abundance, in March, September and December, the first two peaks during the periods of high salinity. In the order of abundance, the forms which constituted the bulk of the plankton were copepods, cladocerans, cirrepede larvae, Lucifer, chaetognaths and appendicularians. The copepod distribution was found to have characters common both to that of the adjacent coastal waters of Bay of Bengal on the southeast coast and to that of the Arabian sea on the southwest coast. The peak occurrence of cladocerans during May-July was followed by the appearance of juvenile mackerels in early August. Pelagic fish catch, consisting mostly of anchovies and lesser sardines, showed clear peaks, closely following the primary and secondary peaks of plankton. The peak occurrence of anchovies during September-October seems to be in prey-predator relationship with ribbonfish, the peak of which followed closely

    Mechanism of Resistance in Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae)

    Get PDF
    Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important pulse crop in Asia, and is consumed as dry seeds and as bean sprouts. It is an excellent source of digestible protein. Bruchids [Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.)] are the important pests of mungbean and cause damage in the field and in storage. Bruchid infestation reduces the nutritional and market value of the grain and renders seeds unfit for human consumption, agricultural and commercial uses. These pests are controlled mainly by fumigation with highly toxic chemicals such as carbon disulfide, phosphene, and methyl bromide, or by dusting with several other insecticides, which leave residues on the grain, thus, threatening food safety. Some plant-based extracts have been found useful in controlling bruchids, but are not fully successful due to their short-term activity, rapid degradability, and potentially negative effect on seed germination. Although some wild sources of bruchid resistance in mungbean have been reported, which have been used to develop bruchid- resistant lines, undesirable genetic linkages threaten the proper exploitation of genetic diversity from wild germplasm into commercial cultivars. Further, biotype variation in bruchids has rendered some mungbean lines susceptible that otherwise would have been resistant to the pest. Host plant resistance is a cost-effective and a safe alternative to control bruchids in mungbean and is associated with morphological, biochemical, and molecular traits. These traits affect insect growth and development, thereby, reduce the yield losses by the pests. Understanding the defense mechanisms against insect pests could be utilized in exploiting these traits in crop breeding. This review discusses different traits in mungbean involved in defense against bruchids and their utility in pest management. We also highlight the breeding constraints for developing bruchid-resistant mungbean and how can these constraints be minimized. We further highlight the importance of supporting conventional breeding techniques by molecular techniques such as molecular markers linked to bruchid resistance

    Larval rearing of mud crab, Scylla tranquebarica (Fabricius, 1798) and feeding requirements of its zoea

    Get PDF
    Feeding experiments were conducted with zooplankton to find out the suitable food for zoea1 of the mud crab Scylla tranquebarica. Zoeae1 from seven berried females, three from wild and four from rematured specimens were the source material for the present study. The veliger larvae (50-55╬╝m) of pearl oyster and two species (Pseudodiaptomus spp. and Labidocera spp.) of pelagic copepods (500-1000 ╬╝m) were tested as feed. However, the zoea1 accepted only the former. The feeding activity could be resolved into 5 stages. Significant role of the serrated caudal setae in prey abrasion into required size suitable to mandibles for mastication and the size preference of the items of diet in relation to the growth of the mandibles with the advancement of zoeal stage also have been discussed. In all the 7 feeding experiments that were conducted by providing rotifer, Brachionus rotundiformis (<100 ╬╝m), the zoea1 advanced to zoea3/zoea4 or the first crab stage. The present study is a significant development in narrating the feeding behaviour of zoea1

    Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes

    Get PDF
    BACKGROUND: Early clinical trials, mostly in the setting of melanoma, have shown that dendritic cells (DCs) expressing tumor antigens induce some immune responses and some clinical responses. A major difficulty is the extension to other tumors, such as breast carcinoma, for which few defined tumor-associated antigens are available. We have demonstrated, using both prostate carcinoma and melanoma as model systems, that DCs loaded with killed allogeneic tumor cell lines can induce CD8(+ )T cells to differentiate into cytotoxic T lymphocytes (CTLs) specific for shared tumor antigens. METHODS: The present study was designed to determine whether DCs would capture killed breast cancer cells and present their antigens to autologous CD4(+ )and CD8(+ )T cells. RESULTS: We show that killed breast cancer cells are captured by immature DCs that, after induced maturation, can efficiently present MHC class I and class II peptides to CD8(+ )and CD4(+ )T lymphocytes. The elicited CTLs are able to kill the target cells without a need for pretreatment with interferon gamma. CTLs can be obtained by culturing the DCs loaded with killed breast cancer cells with unseparated peripheral blood lymphocytes, indicating that the DCs can overcome any potential inhibitory effects of breast cancer cells. CONCLUSION: Loading DCs with killed breast cancer cells may be considered a novel approach to breast cancer immunotherapy and to identification of shared breast cancer antigens

    Genome wide association analysis for grain micronutrients and anti-nutritional traits in mungbean [Vigna radiata (L.) R. Wilczek] using SNP markers

    Get PDF
    Mungbean is an important food grain legume for human nutrition and nutritional food due to its nutrient-dense seed, liked palatability, and high digestibility. However, anti-nutritional factors pose a significant risk to improving nutritional quality for bio fortification. In the present study, genetic architecture of grain micronutrients (grain iron and zinc concentration) and anti-nutritional factors (grain phytic acid and tannin content) in association mapping panel of 145 diverse mungbean were evaluated. Based on all four parameters genotypes PUSA 1333 and IPM 02-19 were observed as desired genotypes as they had high grain iron and zinc concentration but low grain phytic acid and tannin content. The next generation sequencing (NGS)-based genotyping by sequencing (GBS) identified 14,447 genome-wide SNPs in a diverse selected panel of 127 mungbean genotypes. Population admixture analysis revealed the presence of four different ancestries among the genotypes and LD decay of тИ╝57.6 kb kb physical distance was noted in mungbean chromosomes. Association mapping analysis revealed that a total of 20 significant SNPs were shared by both GLM and Blink models associated with grain micronutrient and anti-nutritional factor traits, with Blink model identifying 35 putative SNPs. Further, this study identified the 185 putative candidate genes. Including potential candidate genes Vradi07g30190, Vradi01g09630, and Vradi09g05450 were found to be associated with grain iron concentration, Vradi10g04830 with grain zinc concentration, Vradi08g09870 and Vradi01g11110 with grain phytic acid content and Vradi04g11580 and Vradi06g15090 with grain tannin content. Moreover, two genes Vradi07g15310 and Vradi09g05480 showed significant variation in protein structure between native and mutated versions. The identified SNPs and candidate genes are potential powerful tools to provide the essential information for genetic studies and marker-assisted breeding program for nutritional improvement in mungbean

    Effect of temperature and time delay in centrifugation on stability of select biomarkers of nutrition and non-communicable diseases in blood samples

    Get PDF
    Introduction: Preanalytical conditions are critical for blood sample integrity and poses challenge in surveys involving biochemical measurements. A cross sectional study was conducted to assess the stability of select biomarkers at conditions that mimic field situations in surveys. Material and methods: Blood from 420 volunteers was exposed to 2 тАУ 8 ┬░C, room temperature (RT), 22 тАУ 30 ┬░C and > 30 ┬░C for 30 min, 6 hours, 12 hours and 24 hours prior to centrifugation. After different exposures, whole blood (N = 35) was used to assess stability of haemoglobin, HbA1c and erythrocyte folate; serum (N = 35) for assessing stability of ferritin, C-reactive protein (CRP), vitamins B12, A and D, zinc, soluble transferrin receptor (sTfR), total cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), tryglicerides, albumin, total protein and creatinine; and plasma (N = 35) was used for glucose. The mean % deviation of the analytes was compared with the total change limit (TCL), computed from analytical and intra-individual imprecision. Values that were within the TCL were deemed to be stable. Result: Creatinine (mean % deviation 14.6, TCL 5.9), haemoglobin (16.4%, TCL 4.4) and folate (33.6%, TCL 22.6) were unstable after 12 hours at 22- 30┬░C, a temperature at which other analytes were stable. Creatinine was unstable even at RT for 12 hours (mean % deviation: 10.4). Albumin, CRP, glucose, cholesterol, LDL, triglycerides, vitamins B12 and A, sTfR and HbA1c were stable at all studied conditions. Conclusion: All analytes other than creatinine, folate and haemoglobin can be reliably estimated in blood samples exposed to 22-30┬░C for 12 hours in community-based studies

    Use of Phenomics for Differentiation of Mungbean (Vigna radiata L. Wilczek) Genotypes Varying in Growth Rates Per Unit of Water

    Get PDF
    In the human diet, particularly for most of the vegetarian population, mungbean (Vigna radiata L. Wilczek) is an inexpensive and environmentally friendly source of protein. Being a short-duration crop, mungbean fits well into different cropping systems dominated by staple food crops such as rice and wheat. Hence, knowing the growth and production pattern of this important legume under various soil moisture conditions gains paramount significance. Toward that end, 24 elite mungbean genotypes were grown with and without water stress for 25 days in a controlled environment. Top view and side view (two) images of all genotypes captured by a high-resolution camera installed in the high-throughput phenomics were analyzed to extract the pertinent parameters associated with plant features. We tested eight different multivariate models employing machine learning algorithms to predict fresh biomass from different features extracted from the images of diverse genotypes in the presence and absence of soil moisture stress. Based on the mean absolute error (MAE), root mean square error (RMSE), and R squared (R2) values, which are used to assess the precision of a model, the partial least square (PLS) method among the eight models was selected for the prediction of biomass. The predicted biomass was used to compute the plant growth rates and water-use indices, which were found to be highly promising surrogate traits as they could differentiate the response of genotypes to soil moisture stress more effectively. To the best of our knowledge, this is perhaps the first report stating the use of a phenomics method as a promising tool for assessing growth rates and also the productive use of water in mungbean crop
    • тАж
    corecore