52 research outputs found

    Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo

    Get PDF
    Bamboo, a non-timber grass species, known for exceptionally fast growth is a commercially viable crop. Long terminal repeat (LTR) retrotransposons, the main class I mobile genetic elements in plant genomes, are highly abundant (46%) in bamboo, contributing to genome diversity. They play significant roles in the regulation of gene expression, chromosome size and structure as well as in genome integrity. Due to their random insertion behavior, interspaces of retrotransposons can vary significantly among bamboo genotypes. Capitalizing this feature, inter-retrotransposon amplified polymorphism (IRAP) is a high-throughput marker system to study the genetic diversity of plant species. To date, there are no transposon based markers reported from the bamboo genome and particularly using IRAP markers on genetic diversity. Phyllostachys genus of Asian bamboo is the largest of the Bambusoideae subfamily, with great economic importance. We report structure-based analysis of bamboo genome for the LTR-retrotransposon superfamilies, Ty3-gypsy and Ty1-copia, which revealed a total of 98,850 retrotransposons with intact LTR sequences at both the ends. Grouped into 64,281 clusters/scaffold using CD-HIT-EST software, only 13 clusters of retroelements were found with more than 30 LTR sequences and with at least one copy having all intact protein domains such as gag and polyprotein. A total of 16 IRAP primers were synthesized, based on the high copy numbers of conserved LTR sequences. A study using these IRAP markers on genetic diversity and population structure of 58 Asian bamboo accessions belonging to the genus Phyllostachys revealed 3340 amplicons with an average of 98% polymorphism. The bamboo accessions were collected from nine different provinces of China, as well as from Italy and America. A three phased approach using hierarchical clustering, principal components and a model based population structure divided the bamboo accessions into four sub-populations, PhSP1, PhSP2, PhSP3 and PhSP4. All the three analyses produced significant sub-population wise consensus. Further, all the sub-populations revealed admixture of alleles. The analysis of molecular variance (AMOVA) among the sub-populations revealed high intra-population genetic variation (75%) than inter-population. The results suggest that Phyllostachys bamboos are not well evolutionarily diversified, although geographic speciation could have occurred at a limited level. This study highlights the usability of IRAP markers in determining the inter-species variability of Asian bamboos

    Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of Asian bamboo

    Get PDF
    Bamboo, a non-timber grass species, known for exceptionally fast growth, is a commercially viable crop. Long terminal repeat (LTR) retrotransposons, the main class I mobile genetic elements in plant genomes, are highly abundant (46%) in bamboo contributing to genome diversity. They play significant roles in the regulation of gene expression, chromosome size and structure as well as in genome integrity. Inter-retrotransposon amplified polymorphism (IRAP) is a high-throughput method to study the genetic diversity of plant species. Till date, there are no markers based on Transposable Elements (TEs) for the bamboo genome and no reports on bamboo genetic diversity using the IRAP method. Phyllostachys is an Asian bamboo, the largest group in the bamboo subfamily, Bambusoideae, and it is of great economic value due to its fast growth. The structure of LTR-retrotransposon superfamilies, Ty3-gypsy and Ty1-copia, were analysed in the bamboo genome using LTRharvest and LTRdigest software. A total of 98,850 LTR retrotransposons with both ends of intact LTR sequences were identified, grouped into 64,281 clusters/scaffolds, using CD-HIT software. Among the total of 64,281 clusters, 13 clusters had more than 30 copy numbers of LTR sequences and at least one copy had all intact protein domains such as gag protein and polyprotein. Based on the high copy numbers of conserved LTR sequences, a total of 16 IRAP primers were developed. All these IRAP primers were used to study the genetic diversity and population structure of the Asian bamboo. AMOVA analysis was done for 58 Asian bamboo species collected from nine different provinces of China, from Italy and America. In the bamboo species, these IRAP primers produced a total of 3340 amplicons with an average of 98% polymorphism. The 58 Asian bamboo species were grouped into two major clusters and four sub-clusters, based on UPGMA analysis. UPGMA cluster analysis was corroborated by statistical analyses of genetic similarity coefficients. Structure analysis showed that the bamboo species could be divided into four subpopulations (K = 4): SP1, SP2, SP3 and SP4. All SPs had an admixture of alleles. AMOVA analysis showed that higher genetic variations occurred within populations (75%) rather than among populations (25%). The study highlights the usability of IRAP in Asian bamboo to determine inter-species variability using retrotransposon markers.Peer reviewe

    Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo

    Get PDF
    Bamboo, a non-timber grass species, known for exceptionally fast growth is a commercially viable crop. Long terminal repeat (LTR) retrotransposons, the main class I mobile genetic elements in plant genomes, are highly abundant (46%) in bamboo, contributing to genome diversity. They play significant roles in the regulation of gene expression, chromosome size and structure as well as in genome integrity. Due to their random insertion behavior, interspaces of retrotransposons can vary significantly among bamboo genotypes. Capitalizing this feature, inter-retrotransposon amplified polymorphism (IRAP) is a high-throughput marker system to study the genetic diversity of plant species. To date, there are no transposon based markers reported from the bamboo genome and particularly using IRAP markers on genetic diversity. Phyllostachys genus of Asian bamboo is the largest of the Bambusoideae subfamily, with great economic importance. We report structure-based analysis of bamboo genome for the LTR-retrotransposon superfamilies, Ty3-gypsy and Ty1-copia, which revealed a total of 98,850 retrotransposons with intact LTR sequences at both the ends. Grouped into 64,281 clusters/scaffold using CD-HIT-EST software, only 13 clusters of retroelements were found with more than 30 LTR sequences and with at least one copy having all intact protein domains such as gag and polyprotein. A total of 16 IRAP primers were synthesized, based on the high copy numbers of conserved LTR sequences. A study using these IRAP markers on genetic diversity and population structure of 58 Asian bamboo accessions belonging to the genus Phyllostachys revealed 3340 amplicons with an average of 98% polymorphism. The bamboo accessions were collected from nine different provinces of China, as well as from Italy and America. A three phased approach using hierarchical clustering, principal components and a model based population structure divided the bamboo accessions into four sub-populations, PhSP1, PhSP2, PhSP3 and PhSP4. All the three analyses produced significant sub-population wise consensus. Further, all the sub-populations revealed admixture of alleles. The analysis of molecular variance (AMOVA) among the sub-populations revealed high intra-population genetic variation (75%) than inter-population. The results suggest that Phyllostachys bamboos are not well evolutionarily diversified, although geographic speciation could have occurred at a limited level. This study highlights the usability of IRAP markers in determining the inter-species variability of Asian bamboos

    Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element

    Get PDF
    Mariner-like elements (MLE) are a super-family of DNA transposons widespread in animal and plant genomes. Based on their transposition characteristics, such as random insertions and high-frequency heterogeneous transpositions, several MLEs have been developed to be used as tools in gene tagging and gene therapy. Two active MLEs, Ppmar1 and Ppmar2, have previously been identified in moso bamboo (Phyllostachys edulis). Both of these have a preferential insertion affinity to AT-rich region and their insertion sites are close to random in the host genome. In Ppmar2 element, we studied the affinities of terminal inverted repeats (TIRs) to DNA binding domain (DBD) and their influence on the transposition activity. We could identify two putative boxes in the TIRs which play a significant role in defining the TIR’s affinities to the DBD. Seven mutated TIRs were constructed, differing in affinities based on similarities with those of other plant MLEs. Gel mobility shift assays showed that the TIR mutants with mutation sites G669A-C671A had significantly higher affinities than the mutants with mutation sites C657T-A660T. The high-affinity TIRs indicated that their transposition frequency was 1.5–2.0 times higher than that of the wild type TIRs in yeast transposition assays. The MLE mutants with low-affinity TIRs had relatively lower transposition frequency from that of wild types. We conclude that TIR affinity to DBD significantly affects the transposition activity of Ppmar2. The mutant MLEs highly active TIRs constructed in this study can be used as a tool for bamboo genetic studies

    Genetics and genomics of moso bamboo (Phyllostachys edulis) : Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry

    Get PDF
    Sustainable goals for contemporary world seek viable solutions for interconnected challenges, particularly in the fields of food and energy security and climate change. We present bamboo, one of the versatile plant species on earth, as an ideal candidate for bioeconomy for meeting some of these challenges. With its potential realized, particularly in the industrial sector, countries such as China are going extensive with bamboo development and cultivation to support a myriad of industrial uses. These include timber, fiber, biofuel, paper, food, and medicinal industries. Bamboo is an ecologically viable choice, having better adaptation to wider environments than do other grasses, and can help to restore degraded lands and mitigate climate change. Bamboo, as a crop species, has not become amenable to genetic improvement, due to its long breeding cycle, perennial nature, and monocarpic behavior. One of the commonly used species, moso bamboo (Phyllostachys edulis) is a potential candidate that qualifies as industrial bamboo. With its whole-genome information released, genetic manipulations of moso bamboo offer tremendous potential to meet the industrial expectations either in quality or in quantity. Further, bamboo cultivation can expect several natural hindrances through biotic and abiotic stresses, which needs viable solutions such as genetic resistance. Taking a pragmatic view of these future requirements, we have compiled the present status of bamboo physiology, genetics, genomics, and biotechnology, particularly of moso bamboo, to drive various implications in meeting industrial and cultivation requirements. We also discuss challenges underway, caveats, and contextual opportunities concerning sustainable development.Peer reviewe

    Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element

    Get PDF
    Mariner-like elements (MLE) are a super-family of DNA transposons widespread in animal and plant genomes. Based on their transposition characteristics, such as random insertions and high-frequency heterogeneous transpositions, several MLEs have been developed to be used as tools in gene tagging and gene therapy. Two active MLEs, Ppmar1 and Ppmar2, have previously been identified in moso bamboo (Phyllostachys edulis). Both of these have a preferential insertion affinity to AT-rich region and their insertion sites are close to random in the host genome. In Ppmar2 element, we studied the affinities of terminal inverted repeats (TIRs) to DNA binding domain (DBD) and their influence on the transposition activity. We could identify two putative boxes in the TIRs which play a significant role in defining the TIR’s affinities to the DBD. Seven mutated TIRs were constructed, differing in affinities based on similarities with those of other plant MLEs. Gel mobility shift assays showed that the TIR mutants with mutation sites G669A-C671A had significantly higher affinities than the mutants with mutation sites C657T-A660T. The high-affinity TIRs indicated that their transposition frequency was 1.5–2.0 times higher than that of the wild type TIRs in yeast transposition assays. The MLE mutants with low-affinity TIRs had relatively lower transposition frequency from that of wild types. We conclude that TIR affinity to DBD significantly affects the transposition activity of Ppmar2. The mutant MLEs highly active TIRs constructed in this study can be used as a tool for bamboo genetic studies

    Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress

    Get PDF
    Background LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. Results The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. Conclusions Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.Peer reviewe

    Epigenetic stress memory: A new approach to study cold and heat stress responses in plants

    Get PDF
    Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation. Nevertheless, some of the modifications may be stable and passed on as stress memory, potentially allowing them to be inherited across generations, whereas some of the modifications are reactivated during sexual reproduction or embryogenesis. Several stress-related genes are involved in stress memory inheritance by turning on and off transcription profiles and epigenetic changes. Vernalization is the best example of somatic stress memory. Changes in the chromatin structure of the Flowering Locus C (FLC) gene, a MADS-box transcription factor (TF), maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter; and during vernalization, B3 TFs, cold memory cis-acting element and polycomb repressive complex 1 and 2 (PRC1 and 2) silence FLC activation. In contrast, the repression of SQUAMOSA promoter-binding protein-like (SPL) TF and the activation of Heat Shock TF (HSFA2) are required for heat stress memory. However, it is still unclear how stress memory is inherited by offspring, and the integrated view of the regulatory mechanisms of stress memory and mitotic and meiotic heritable changes in plants is still scarce. Thus, in this review, we focus on the epigenetic regulation of stress memory and discuss the application of new technologies in developing epigenetic modifications to improve stress memory.Peer reviewe

    The role of LTR retrotransposons in plant genetic engineering : How to control their transposition in the genome

    Get PDF
    Key message We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement. Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vectors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncovering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic engineering are briefly discussed.Peer reviewe
    corecore