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Abstract
Key message We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for 
the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic 
improvement.
Abstract Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being 
infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability 
of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vec-
tors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the 
similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. 
Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the 
integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing 
intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is 
not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete 
proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out 
of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain 
epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a 
genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncov-
ering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic 
engineering are briefly discussed.
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Introduction: LTR retrotransposons

Transposable elements (TEs) are mobile genetic elements 
which represent a significant portion of eukaryotic genomes. 
Based on their mechanism of transposition, TEs are classi-
fied into DNA transposons (Class II) and retrotransposons 
(Class I). Retrotransposons are divided into long terminal 
repeat retrotransposons (LTR retrotransposons), non-LTR 
retrotransposons, and DIRS (Dictyostelium intermediate 

repeat sequence) (Bourque et al. 2018). LTR retrotranspo-
sons, the most abundant group of TEs in the plant genome, 
use a “copy-and-paste” mechanism via an RNA interme-
diate for their transposition (Fig. 1). LTR retrotransposons 
are generally classified into three superfamilies, Ty1/copia, 
Ty3/Gypsy, and endogenous retroviruses (ERVs). Ty1/Copia 
and Ty3/Gypsy are dispersed across the genomes of higher 
plants. Members of these superfamilies are capable of 
increasing in copy numbers, and are often activated by 

Fig. 1  The mechanism of 
transposition of long terminal 
repeat (LTR) retrotransposons, 
non-LTR retrotransposons, and 
retroviruses. A After the tran-
scription of a LTR retrotranspo-
son, the mRNA encodes GAG 
and POL proteins to produce 
virus-like particles (VLPs) with 
reverse transcriptase, which 
synthesises the cDNA; then, 
the cDNA is imported into the 
nucleus and integrated into the 
genome, which is called repli-
cate retrotransposition; RNP and 
PIC the ribonucleoprotein parti-
cle and pre-integration complex, 
respectively. B Non-LTR 
retrotransposons use target site-
primed reverse transcription and 
usually terminate in a poly(A) 
sequence; TSD target site dupli-
cation. C The transposition of 
retroviruses and LTR retrotrans-
posons is relatively similar, but 
retroviruses have an envelope 
(env) gene that infects animal/
insect cells; also, retroviruses 
have an additional open reading 
frame (ORF) in their genome. 
Created with BioRender.com
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various biotic and abiotic stresses due to retrotransposition 
bursts (Havecker et al. 2004).

Retrotransposons outnumber genes in plant genomes, 
comprising the bulk of the genome, and they are largely 
inactive during development (Alzohairy et al. 2014). How-
ever, they replicate through cycles of transcription, reverse 
transcription, and integrate new copies, without deleting 
original copies from the genome during replication (Ques-
neville 2020; Ramakrishnan et al. 2022). The replication of 
LTR retrotransposons is equivalent to the intracellular phase 
of the retroviral life cycle (Li et al. 2022). LTR retrotranspo-
sons cause easily detectable genetic changes in the genome 
(Bourque et al. 2018). The replication of retroviruses and 
retrotransposons depends on the selection of a favorable 
chromosomal site for the integration of their genomic DNA 
(Sultana et al. 2017). Therefore, LTR retrotransposon inser-
tions and their mechanisms of targeted integration could 
have significant applications in genome engineering. This 
review provides a brief account of the current understanding 
of these elements and their roles in crop plants, and explores 
how LTR retrotransposons can be used as genetic engineer-
ing tools for plant breeding and agriculture.

LTR retrotransposons and retroviruses

LTR retrotransposons and retroviruses are somewhat simi-
lar (Li et al. 2022). Like retroviruses, LTR retrotransposons 
replicate through a cycle of transcription of integrated cop-
ies as if they were cellular genes, followed by translation of 
their encoded products and reverse transcription of RNA 
into cDNA (Fig. 1). These proteins are present in two main 
open reading frames (ORFs) that specify GAG, the struc-
tural protein forming the nucleocapsid, and the POL poly-
protein, which is processed by its own aspartic proteinase 
(AP) domain. The ORF also contains reverse transcriptase 
(RT) and RNAse H (RH) to perform reverse transcription, 
and an integrase (IN) to insert the new copy into the genome 
(Quesneville 2020; Ramakrishnan et al. 2022).

However, retroviruses have an envelope (env) gene that 
is used to infect animal/insect cells (Sultana et al. 2017) 
(Fig. 1). Further, retroelements with an extra ORF in the 
same position as the env gene have been found in retrovirus 
genomes (Leblanc et al. 2000; Pelisson et al. 2002). In host 
cells, 5′ LTR is known to control the expression of retrovi-
rus genes responsible for producing infectious particles. In 
certain retroviruses, 3′ LTR is oriented in the inverse direc-
tion from that of the transcription controlled by the 5′ LTR 
(Barbeau and Mesnard 2011).

In contrast to retroviruses, LTR retrotransposons, with 
a few exceptions (Ty3/Gypsy superfamily), do not con-
tain the env gene encoding the envelope protein necessary 
for retrovirus integration (Quesneville 2020; Vicient and 

Casacuberta 2020). Because the envelope protein is absent 
in most plant LTR retrotransposons, the infection does not 
occur as it does with retroviruses. The retrotransposon 
copies do not leave the host cell. Instead, they migrate out 
of the nucleus and integrate the newly synthesized cDNA 
into another locus of the same genome (Havecker et al. 
2004), resulting in the accumulation of multiple copies of 
a particular retrotransposon. In contrast, for retroviruses, a 
complete cycle consists of the retroviruses infecting a cell 
and migrating from that cell to the next (Havecker et al. 
2004; Sultana et al. 2017). Hence, the copy number of ret-
roviruses is not high. In addition to the envelope protein, 
animal cells are characterized by the presence of appro-
priate membrane proteins to which the envelope protein 
binds during retrovirus integration (Grandi and Tramon-
tano 2018). Therefore, the presence of membrane proteins 
on the animal cell wall, and the presence of an envelope 
protein on the surface of the virus, allow retroviruses to 
easily integrate into animal cells.

Having the property of being infectious, retroviruses 
have several advantages as vectors for gene delivery, such 
as receptor-mediated uptake of a membrane-coated viral 
particle into target cells, reverse transcription of a plus-
stranded RNA genome into double-stranded DNA, and cyto-
plasmic assembly of particles with the full-length retroviral 
mRNA as the mobile form of genetic information (Baum 
et al. 2006). Despite their infectious properties, retroviral 
sequences have been chosen to produce beneficial immune 
functions through immune epigenetic regulation in mam-
mals (Buttler and Chuong 2022). Although retroviral vector-
mediated gene transfer systems have been a good choice 
for animals, this method is not suitable for plants, as plants 
lack the appropriate membrane/receptor proteins needed to 
bind the retroviral envelope protein (Grandi and Tramontano 
2018).

In plants, activating or silencing LTR retrotransposons 
could produce favorable epigenetic modifications. For epi-
genetic modification, however, using LTR retrotransposons, 
as candidates, presents many advantages (such as genome 
stability, gene imprinting, introduction of new gene func-
tions, genetic variability, stress tolerance, etc.) and disad-
vantages (such as mutagenic effects, genetic rearrangements, 
genomic stress, loss of gene function, high copy numbers, 
etc.) (Ramakrishnan et al. 2021; Zhang et al. 2018). For 
example, hypomethylation of retrotransposon, related to 
rice Karma, reduced the yield in African oil palm (Elaeis 
guineensis), while hypermethylation of the retrotransposon, 
near the Karma splice improved the normal fruit set (Ong-
Abdullah et al. 2015). It is up to future research on the artifi-
cial activation of LTR retrotransposons, and the mechanisms 
involved in their mobility and silencing, to provide a better 
understanding of their involvement in plant genome evolu-
tion and genetic diversity.
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Role of LTR retrotransposons in crop plants

Some LTR retrotransposons associated with molecular 
functions have been identified in crop plants, and can be 
used as tools in plant genetic engineering (reviewed by 
Galindo-Gonzalez et al. 2017; Orozco-Arias et al. 2019). 
More candidate LTR retrotransposon tools for genetic 
engineering will be identified over time with advances in 
technologies such as high-throughput long-read sequenc-
ing. This review focuses on LTR retrotransposons, mostly 
characterized through tissue culture approaches (Table 1), 
which can be used as genetic engineering tools. Tobacco 
Tnt1 LTR sequences have been characterized in several 
higher plants by tissue culture approaches. The transposi-
tion of Tnt1 in tobacco mesophyll protoplasts showed its 
potential as a genetic engineering tool in plants (Grand-
bastien et al. 1989). Moreover, two Tnt1 elements in trans-
genic tobacco were expressed in leaf-derived protoplast, 
but not in leaf tissues, indicating that the transcription 
features of Tnt1 could provide a molecular basis for soma-
clonal variation and tissue culture-induced mutagenesis 
(Pouteau et al. 1991). Moreover, fungal extracts can effi-
ciently activate Tnt1 transposition and increase the number 
of new copies of Tnt1 with high sequence similarities to 
subpopulations; therefore, Tnt1 transposition might play 
a significant role in activating the host’s genetic plasticity 
in response to environmental stress (Melayah et al. 2001). 
For instance, in Medicago truncatula, a Tnt1 element was 
activated during protoplast culture, generating the highest 
copy number insertions per plant, and the copy numbers 
were stable during the life cycle (d'Erfurth et al. 2003). 
Therefore, Tnt1 can be used as a powerful genetic engi-
neering tool in leguminous plants. In addition, the expres-
sion of the Tnt1 promoter in heterologous species of trans-
genic tomato and Arabidopsis are capable of inducing a 
plant defense response, and  CuCl2 and salicylic acid treat-
ment can be used to drive transgenes that confer resistance 
to plant parasites and pathogens (Mhiri et al. 1997).

The copy numbers of Tos17, an endogenous Ty1/copia-
like LTR retrotransposon, in transgenic rice have increased 
with prolonged tissue culture duration, and tissue culture-
induced mutations of Tos17 could be an advantage for an 
insertional mutagenesis system, and for the functional 
analysis of genes (Hirochika et al. 1996). Furthermore, the 
sequence analysis of Tos17 insertion mutant lines through 
tissue culture showed that Tos17 prefers to integrate into 
genic rather than intergenic regions (Miyao et al. 2003). 
This indicates that the utility of Tos17 insertions could lie 
in the rapidly evolving gene classes. On the other hand, 
the targeted mutagenesis of Tos17, using the genome 
editing tool, clustered regularly interspaced short pal-
indromic repeats (CRISPR)-associated protein 9 (Cas9) 

(CRISPR/Cas9), in rice revealed that regenerated plants 
derived from callus culture and homozygous plants show 
a lack of Tos17 in the next generation (Saika et al. 2019), 
which might be a useful tool to elucidate the functional 
role of TE transposition in genome evolution. Similarly, 
the activity of mutated Tos17 on chromosomes 7 (Tos17 
Chr.7) in rice through tissue culture showed 873-bp DNA 
deletion in the coding region of the pol gene by CRISPR/
Cas9-mediated gene editing with single guide RNAs (sgR-
NAs), and, further, the generation of Tos17 D873 indi-
cates that Tos17 requires gag, integrase, and pol domains 
for its transposition (Luo et al. 2020). This demonstrates 
that the generation of the Tos17 D873 allele might be use-
ful in the establishment of transgenic rice plants for gene 
function and epigenetics. Moreover, Tos17 Chr.7 has been 
extensively used for insertional mutagenesis as a tool for 
the functional analysis of rice genes.

The Tto1 element in tobacco is an active plant retrotrans-
poson (Hirochika 1993), and the Tto1 promoter in tobacco is 
responsible for a significant level of expression in transgenic 
plants, demonstrating that a 13-bp cis-regulatory element is 
involved in response to tissue culture, wounding fungal elici-
tors, and methyl-jasmonate (Takeda et al. 1999). Moreover, 
Tto1 could be induced in tobacco leaves by wounding and 
methyl-jasmonate stimuli. The decrease in DNA methylation 
and gene silencing machinery in the suppression of Tto1 and 
Tar17 induced by tissue culture has been shown to become 
hypomethylated, and transcriptionally active in ddm1 (for 
decrease in DNA methylation) mutants, suggesting that gene 
silencing and DNA methylation are effective strategies in 
LTR retrotransposon suppression (Hirochika et al. 2000). 
This also provides an opportunity to control retrotranspo-
sons for gene silencing, and can be used as a tool for genetic 
engineering in plants.

In chickpea, the CARE1 LTR retrotransposon, from the 
Gypsy superfamily, showed that 5′ LTR was inactive in a 
heterologous plant under normal and tissue culture condi-
tions, indicating that CARE1 cis-elements might be hindered 
in the recruitment of transcription factors to the promoter 
(Rajput and Upadhyaya 2009). The promoter region of the 
hAT superfamily LTR retrotransposon in Saintpaulia spe-
cies showed that tissue culture-derived progeny elicit ret-
rotransposon excision, which, in turn, alters the expression 
levels of flavonoid, 3′, 5′-hydroxylase (F3′F5′H) and flower 
color in Saintpaulia (Sato et al. 2011). Similarly, when a 
transgene driven by the promoter of the Tnt1 element is sta-
bly integrated into tobacco, the transgene is silenced and 
its DNA methylation is increased. However, endogenous 
Tnt1 elements remain partially methylated and incorporate 
histone variants upon induction, suggesting that the Tnt1 
promoter is the target of transcriptional gene silencing in 
tobacco (Hernández-Pinzón et al. 2012). The promoter-
GUS fusion of the LTR retrotransposon, ATCOPIA93, in 
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transgenic Arabidopsis plants, has been shown to behave 
like an immune-responsive gene during pathogen defense, 
which might establish the connection between the respon-
siveness and retrotransposons to biotic stress (Zervudacki 
et al. 2018). Hence, LTR retrotransposons can be targeted 
for biotic stress like immune responses in plants.

A maize retrotransposon, ΔNaeAc, introduced into a flax 
callus by Agrobacterium-mediated transformation showed 
enhanced transcription and transposition in the callus, which 
could emphasize Ac element behavior in different plant spe-
cies (Finnegan et al. 1993). More recently, the insertion of 
the maize LTR retrotransposon, ZmRE-1, in the fifth exon 
of Brachytic2 (Br2) allele, was identified in dwarf mutants 
dwarf2014 (d2014) at exactly the same site, which indicates 
that the transposition of ZmRE-1 might be correlated with 
the change in height, and has the potential to improve grain 
yield and planting density (Li et al. 2020). A BARE-1 LTR 
retrotransposon in barley’s genome possessing functional 
TATA boxes is required to drive the transient expression of 
reporter genes transformed in barley protoplasts, suggest-
ing that BARE-1 could be the potential retrotransposon for 
propagation in barley (Suoniemi et al. 1996; Kalendar et al. 
2000; Vicient et al. 2001). Therefore, the BARE-1 LTR retro-
transposon can be used for epigenetic modification, targeting 
barley propagation. A TLC1 family of LTR retrotransposon 
from Lycopersicon chilense has the cis-regulatory elements 
required for ethylene in stress-induced gene expression in 
transgenic plants and protoplasts, which could play a major 
role in the transcriptional activation of the TLC1 element 
(Tapia et al. 2005).

The Lotus japonicus LTR retrotransposon, LORE1, has 
been located in gene-rich to centromeric heterochroma-
tin regions, and the new insertion mutagenesis of LORE1 
demonstrated transposition into genes of highly repetitive 
sequences in centromeres and telomeres, indicating that 
LORE1 might be an effective LTR retrotransposon in the 
intact plant during in vitro tissue culture (Madsen et al. 
2005). In another report, the chromovirus LORE1 fam-
ily of LTR retrotransposon was epigenetically silenced in 
transgenic plants established by Agrobacterium-mediated 
transformation. The new insertion sites of LORE1 copies 
were frequently found in genic regions and showed no strong 
insertional preferences, and the distinct features of LORE1 
have significant potential for generating genetic and epi-
genetic processes on evolution in host plants (Fukai et al. 
2010). The genome of rice lines derived from seed embryo 
callus culture showed new copies of a transcriptionally acti-
vated LTR retrotransposon, Lullaby, which is an interesting 
candidate for a cis-acting element that could account for 
transcriptional activation in rice calli (Picault et al. 2009).

The osmotic and alkaline tolerance LTR retrotransposon, 
OAR1, in Arabidopsis, demonstrated that the transgenic 
plants exhibit enhanced photochemical efficiency, membrane 

integrity, and biomarker gene expression during osmotic 
and alkaline stresses (Zhao et al. 2014). Furthermore, the 
genetic variation in calli culture and the regeneration of the 
BAGY2 LTR retrotransposon (Leigh et al. 2003; Hosid et al. 
2012) in the barley genome has shown enhanced copy num-
ber variations of the internal domains during tissue culture 
(Yilmaz et al. 2014). Interestingly, a root-specific LTR ret-
rotransposon, Mikki, in rice and in Arabidopsis, is highly 
transcribed in roots during tissue culture, and the spliced 
transcripts constitute a target mimic for miR171, indicating 
that retrotransposon-derived transcripts could act as a decoy 
for miR171 degradation, resulting in root-specific accumula-
tion of SCARECROW-Like mRNAs in various rice species 
(Cho and Paszkowski 2017). The ONSEN retrotransposon in 
Arabidopsis and Japanese radish (Raphanus sativus) indi-
cates that ONSEN could be transposed in heat-stressed callus 
tissue and subsequently regenerated tissues, which, in turn, 
implies that the heat shock transcription factor and RNA-
directed DNA methylation (RdDM)-related genes might 
regulate the transcription and transposition of ONSEN under 
heat stress (Masuta et al. 2017).

The multiple copies of the HUO LTR retrotransposon in 
rice, generated by reciprocal crossing, might trigger genomic 
instability by altering small RNA biogenesis and genome-
wide DNA methylation, resulting in decreased disease resist-
ance and yield, as evidenced by HUO LTR retrotransposon 
elimination during rice domestication and breeding (Peng 
et al. 2019). Cellular labeling of endogenous retrovirus rep-
lication (CLEVR) reveals the replication of TY3/Gypsy LTR 
retrotransposons in both cell culture and individual neurons, 
while the Gypsy-CLEVR replication rate is enhanced when 
the siRNA pathway is genetically disrupted, indicating that 
the CLEVR strategy might apply to other retrotransposons 
in diverse plant species (Chang et al. 2019). It also suggests 
that control over retrotransposons has significant implica-
tions in epigenetic modification and can be used for genetic 
engineering. More recently, the EARE-1 LTR retrotranspo-
son in the genome of Excoecaria agallocha showed elevated 
expression in organs examined under stress, suggesting that 
both the horizontal transfer of retrotransposons and the post-
transcriptional gene silencing of the host might play signifi-
cant roles in the life cycle of EARE-1 (Huang et al. 2017).

Advantages of using LTR retrotransposons 
in plant genetic engineering

Contributing to several molecular functions in the genome 
(Fig.  2), LTR retrotransposons are primarily in-house 
genetic elements of the genome. These elements move 
independently (function autonomously) around the genome 
without external vectors. To modify genomic functions, 
the activation or deactivation of LTRs can be achieved 
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through physical stresses or chemical treatment (enzymes). 
For instance, RNA editing enzymes, such as adenosine 
deaminse acting on double-stranded RNAs (ADARs), play 
a dynamic role in regulating transcriptome and proteome 
diversity (Piontkivska et al. 2021). It has been found that 
ADAR editing and the ERI-6/7/MOV10 RNAi pathway (the 
endogenous RNA interference factor ERI-6/7, a homolog of 
MOV10 helicase) silence LTR retrotransposons associated 
with human autoimmune disorders and neurodegenerative 
diseases (Fischer and Ruvkun 2020). Identifying such path-
ways that regulate LTRs in plants may lead to the develop-
ment of disease-free plants.

The activity of the retrotransposon, Tos17 Chr.7 , in rice 
varieties, through 5-azacytidine (5-azaC) treatment, resulted 
in methylation and activation, and Tos17 copies are not 
only methylated to some extent in all varieties but a grad-
ual increase in DNA methylation was also observed with 
the growth of the plant (Cheng et al. 2006). More focused 
research in the chemical activators of enzymes that activate 
LTRs for desired genetic change may contribute to plant 
breeding, and to the successful development of crops with 
the desired traits. The copy numbers of LTRs associated 
with specific genetic changes and desired traits could also be 
increased (Kumar and Hirochika 2001). Moreover, endog-
enous active copies of retrotransposons can be isolated using 

simple reverse transcription PCR (Hirochika 1993). These 
insights into the possible advantages of using LTRs are just 
the tip of the iceberg: their use as genetic engineering tools 
awaits further advances in research.

Hurdles in using LTR retrotransposons 
in plant genetic engineering

Although LTR retrotransposons are predicted to be good 
tools for plant genetic engineering, in practice, there are 
many hurdles when it comes to their application: lack of 
control over copy numbers and differences in the expression 
of the copies. High copy numbers cause either beneficial or 
harmful mutations, regulate gene functions, and maintain 
genome stability (Belyayev et al. 2010). Copy numbers of 
retrotransposons range from hundreds to hundreds of thou-
sands. For instance, the Ty1-copia element, BARE-1, in 
barley, ranges from 20,000 to 200,000 copies (Vicient et al. 
2000; Shelke and Das 2015), and these copies are mainly 
located in heterochromatic regions including centromeres 
(Feng et al. 2002). To balance copy numbers, plants have 
evolved a complex regulatory network of epigenetic mech-
anisms to silence TE activity (Sinzelle et al. 2009; Lisch 
2013). Thus, most copies are dead or epigenetically silenced, 

Fig. 2  Applications of LTR 
retrotransposons in plant genetic 
engineering. Created with 
BioRender.com
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and high levels of DNA methylation at cytosine nucleotides 
have been associated with TE silencing (Cavrak et al. 2014). 
The level of epigenetic modification is also associated with 
the silencing of retrotransposons, but how the genome bal-
ances the copy numbers remains unclear.

According to the stages of plant growth and develop-
ment, many copies are often activated and deactivated by 
epigenetic modification. For example, a null mutation of 
Arabidopsis maintenance METHYLTRANSFERASE 1 
(MET1) activates EVADÉ (EVD), a retrotransposon of the 
ATCOPIA93 family capable of amplification during the sex-
ual propagation of the mutant plant (Mirouze et al. 2009). 
Another major challenge is the difference in the copy num-
ber expression of the same family, and these differences also 
vary among species and according to plant developmental 
stages; moreover, they are highly heterogeneous, and poly-
morphic at insertion sites (Liu et al. 2022). Although recent 
high-throughput sequencing technologies have advanced 
the prediction of copy number differences, copy number 
expression, differences, and movement are still not accu-
rately measurable because copy numbers are not directly 
controlled, while several genes and non-coding RNAs are 
derived from these copies. Because of these challenges, it 
is difficult to control active copies to make targeted changes 
in genomic architecture. However, the activity of the host 
RNA polymerase II plays a significant role in the repression 
of retrotransposons, because the mobility of elements mostly 
depends on Pol II (Hermant and Torres-Padilla 2021). More-
over, the synergistic inhibition of DNA methylation and Pol 
II activity can create a strong stress-dependent mobilization 
of the heat-responsive ONSEN in Arabidopsis (Thieme et al. 
2017). Likewise, dead copies can also be activated using 
epigenetic modification and targeted genome editing.

Apart from this, to overcome the hurdles of LTR applica-
tion in plant genetic engineering, advancement of technolo-
gies with emerging research tools, such as big data, machine 
learning (ML), and artificial intelligence-based deep learn-
ing methods, are necessary to predict and explore methods to 
control LTRs. Integration of precise genome editing technol-
ogy with big data analysis, such as the development of big 
data tools like TEtools (Lerat et al. 2017), may produce new 
insights into control over retrotransposons. Moreover, ML 
algorithms are useful in automatically learning the param-
eters needed to fit a model to a specific problem (Shastry 
and Sanjay 2020), called supervised learning (Zou et al. 
2018). More recently, a machine-learning technique has been 
developed to classify LTR retrotransposons in plant genomes 
(Orozco-Arias et al. 2021). Further such developments in 
computing and a new generation of long-read sequencing 
technologies can contribute better methods for understand-
ing retrotransposon movement, silencing, activation, copy 
number changes, and expression, which may lead in future 
to achieving control over LTR retrotransposons.

Future perspective

1. LTR retrotransposons play a significant role in stress 
management. Understanding the mechanisms involved 
in the activation of specific LTR retrotransposons during 
stress can be a game changer in plant breeding tech-
niques to develop climate-resilient crops.

2. LTR retrotransposons are in-house genetic sequences, so 
using them instead of foreign plasmid or viral vectors 
might be less likely to induce silencing in the modified 
locus or loci of the target genome.

3. Control of LTR retrotransposons through epigenetic 
modification (i.e., turning gene expression on or off) can 
be a promising future research focus for developing LTR 
retrotransposons as a genetic engineering tool.

4. Retrotransposons are known to depend on the transcrip-
tional activity of the host RNA polymerase II for their 
mobility. Nonetheless, we do not know what the direct 
involvement of the host RNA polymerase II is in sup-
pressing the activity of retrotransposons.

5. Recent high-throughput long-read sequencing technolo-
gies have advanced the prediction of copy number dif-
ference. However, technology must advance further in 
order to accurately measure the copy number expression 
and differences in their movement.

6. Novel methods and understandings in big data, machine 
learning, and deep learning-based computation of high-
throughput sequencing data might help us regulate LTR 
retrotransposons in the future.

7. Certain chemicals have proven to be useful in activating 
or silencing LTR retrotransposons. So, the development 
of such chemical combinations can be utilized as a tool 
for making favorable changes in the genetic architecture 
of plants.

8. Identifying physical stress-mediated activation and 
silencing of LTR retrotransposons, and their favorable 
effect on stress mitigation in plants, along with heritable 
epigenetic memory, can help to develop stress-resistant 
crop plants.

9. In certain cases, activating dead copies of LTR retro-
transposons in plants may induce favorable changes in 
gene expression and/or genome organization. Such out-
comes may offer good opportunities for plant epigenetics 
and plant genetic engineering research.

Conclusion

Retrotransposons are retrovirus-like intragenic elements, 
capable of making many changes in genome organization. 
LTR retrotransposons form a major portion of the genomic 
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DNA in eukaryotes. This is an opportunity to develop 
LTR retrotransposons as a tool for integrating desirable 
genetic sequences into the target genome. However, these 
LTR retrotransposons are mostly inactive and cannot 
be controlled for targeted genomic insertion. Recently, 
researchers have explored the role of LTR retrotranspo-
sons in crop plants, leading to insights into specific roles 
of LTR retrotransposons and their molecular mechanisms. 
Studies on epigenetic modifications capable of control-
ling LTR retrotransposons for specific gene expressions 
can provide techniques for using LTR retrotransposons 
as tools for plant genetic engineering. Future research 
will be able to use advancements in molecular technolo-
gies. Computational methods like big data and machine 
learning may help develop regulating procedures for LTR 
retrotransposons.
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