19 research outputs found

    Complex behavioural changes after odour exposure in Drosophila larvae

    Get PDF
    A variety of odorants attract Drosophila larvae, although this behaviour can be modulated by experience. For instance, larvae pre-exposed to an attractive odorant may subsequently display less attraction towards the same compound. In previous reports, this phenomenon has been interpreted as a drop in olfactory sensitivity, caused by sensory adaptation. We tried to elucidate the basis of this behavioural modification by pre-exposing larvae to various odours. After multiple pre-exposure cycles larvae were repulsed by initially attractive odours, and pre-exposure did not change the threshold concentration driving a behavioural response. We therefore believe that sensitivity to the odorant was only slightly affected in our protocol. Our results thus do not support the previous interpretation and rather suggest that olfactory pre-exposure induces a change in the hedonic value of the odour. Although we did not succeed in elucidating the exact nature of the underlying mechanism, we can reject an association of the odour with the absence of food as an interpretation of the observed behavioural changes; this is because addition of food did not abolish the repulsion to the pre-exposed odour. In addition to ruling out previous interpretations of odour pre-exposure effects, this study stresses the complexity of Drosophila larval behaviour

    DmOAZ, the unique Drosophila melanogaster OAZ homologue is involved in posterior spiracle development

    Get PDF
    In this paper, we study DmOAZ, the unique Drosophila melanogaster homologue of the OAZ zinc finger protein family. We show partial conservation of the zinc finger organization between DmOAZ and the vertebrate members of this family. We determine the exon/intron structure of the dmOAZ gene and deduce its open reading frame. Reverse transcriptase-polymerase chain reaction analysis shows that dmOAZ is transcribed throughout life. In the embryo, strongest DmOAZ expression is observed in the posterior spiracles. We suggest that dmOAZ acts as a secondary target of the Abd-B gene in posterior spiracle development, downstream of cut and ems. In a newly created loss-of-function mutant, dmOAZ 93 , the "filzkörper” part of the posterior spiracles, is indeed structurally abnormal. The dmOAZ 93 mutant is a larval lethal, a phenotype that may be linked to the spiracular defect. Given the dmOAZ 93 mutant as a new tool, the fruit fly may provide an alternative model for analyzing in vivo the functions of OAZ family member

    Architecture of the primary taste center of Drosophila melanogaster larvae

    Get PDF
    A simple nervous system combined with stereotypic behavioral responses to tastants, together with powerful genetic and molecular tools, have turned Drosophila larvae into a very promising model for studying gustatory coding. Using the Gal4/UAS system and confocal microscopy for visualizing gustatory afferents, we provide a description of the primary taste center in the larval central nervous system. Essentially, gustatory receptor neurons target different areas of the subesophageal ganglion (SOG), depending on their segmental and sensory organ origin. We define two major and two smaller subregions in the SOG. One of the major areas is a target of pharyngeal sensilla, the other one receives inputs from both internal and external sensilla. In addition to such spatial organization of the taste center, circumstantial evidence suggests a subtle functional organization: aversive and attractive stimuli might be processed in the anterior and posterior part of the SOG, respectively. Our results also suggest less coexpression of gustatory receptors than proposed in prior studies. Finally, projections of putative second-order taste neurons seem to cover large areas of the SOG. These neurons may thus receive multiple gustatory inputs. This suggests broad sensitivity of secondary taste neurons, reminiscent of the situation in mammals

    Integration of complex larval chemosensory organs into the adult nervous system of Drosophila

    Get PDF
    The sense organs of adult Drosophila, and holometabolous insects in general, derive essentially from imaginal discs and hence are adult specific. Experimental evidence presented here, however, suggests a different developmental design for the three largely gustatory sense organs located along the pharynx. In a comprehensive cellular analysis, we show that the posteriormost of the three organs derives directly from a similar larval organ and that the two other organs arise by splitting of a second larval organ. Interestingly, these two larval organs persist despite extensive reorganization of the pharynx. Thus, most of the neurons of the three adult organs are surviving larval neurons. However, the anterior organ includes some sensilla that are generated during pupal stages. Also, we observe apoptosis in a third larval pharyngeal organ. Hence, our experimental data show for the first time the integration of complex, fully differentiated larval sense organs into the nervous system of the adult fly and demonstrate the embryonic origin of their neurons. Moreover, they identify metamorphosis of this sensory system as a complex process involving neuronal persistence, generation of additional neurons and neuronal death. Our conclusions are based on combined analysis of reporter expression from P[GAL4] driver lines, horseradish peroxidase injections into blastoderm stage embryos, cell labeling via heat-shock-induced flip-out in the embryo, bromodeoxyuridine birth dating and staining for programmed cell death. They challenge the general view that sense organs are replaced during metamorphosis

    The leg of Drosophila as a model system for the analysis of neuronal diversity

    No full text
    The neurons innervating insect sense organs vary in number, shape, dendritic morphology, axonal projections and connectivity, providing abundant material for the genetic analysis of neuronal diversity. Here we describe the leg of Drosophila as a potential model system for this analysis. The leg of Drosophila comprises a variety of sense organs arranged in a precise ard reproducible pattern. The cell bodies of the sensory neurons are located near the organ they innervate, which greatly facilitates their identification and accessibility. The development of the leg from its progenitor structure, the imaginal disc, is known in good detail. In particular, the time of appearance and of divisions of the sense organ precursors is known. The origin and mode of formation of the leg nerve (through which all sensory axons project into the central nervous system) has been described. The central projections of some of the sensory neurons have been examined by horse-radish peroxidase backfill or DiI labelling. Finally, the expression of several genes that control the differentiation of various types of sensory neurons can be manipulated at will. We illustrate these different aspects, and discuss the potentials and shortcomings of this system.SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory CircuitGlomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit

    Get PDF
    Background: Drosophila larvae possess only 21 odorant-receptor neurons (ORNs), whereas adults have 1,300. Does this suggest that the larval olfactory system is built according to a different design than its adult counterpart, or is it just a miniature version thereof? Results: By genetically labeling single neurons with FLP-out and MARCM techniques, we analyze the connectivity of the larval olfactory circuit. We show that each of the 21 ORNs is unique and projects to one of 21 morphologically identifiable antennal-lobe glomeruli. Each glomerulus seems to be innervated by a single projection neuron. Each projection neuron sends its axon to one or two of about 28 glomeruli in the mushroom-body calyx. We have discovered at least seven types of projection neurons that stereotypically link an identified antennal-lobe glomerulus with an identified calycal glomerulus and thus create an olfactory map in a higher brain center. Conclusions: The basic design of the larval olfactory system is similar to the adult one. However, ORNs and projection neurons lack cellular redundancy and do not exhibit any convergent or divergent connectivity; 21 ORNs confront essentially similar numbers of antennal-lobe glomeruli, projection neurons, and calycal glomeruli. Hence, we propose the Drosophila larva as an “elementary” olfactory model system

    Lineage and fate in Drosophila: Role of the gene tramtrack in sense organ development

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    DmOAZ, the unique Drosophila melanogaster OAZ homologue is involved in posterior spiracle development.

    Get PDF
    In this paper, we study DmOAZ, the unique Drosophila melanogaster homologue of the OAZ zinc finger protein family. We show partial conservation of the zinc finger organization between DmOAZ and the vertebrate members of this family. We determine the exon/intron structure of the dmOAZ gene and deduce its open reading frame. Reverse transcriptase-polymerase chain reaction analysis shows that dmOAZ is transcribed throughout life. In the embryo, strongest DmOAZ expression is observed in the posterior spiracles. We suggest that dmOAZ acts as a secondary target of the Abd-B gene in posterior spiracle development, downstream of cut and ems. In a newly created loss-of-function mutant, dmOAZ ( 93 ), the "filzkörper" part of the posterior spiracles, is indeed structurally abnormal. The dmOAZ ( 93 ) mutant is a larval lethal, a phenotype that may be linked to the spiracular defect. Given the dmOAZ ( 93 ) mutant as a new tool, the fruit fly may provide an alternative model for analyzing in vivo the functions of OAZ family members.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Developmental origin of wiring specificity in the olfactory system of Drosophila

    Get PDF
    In both insects and mammals, olfactory receptor neurons (ORNs) expressing specific olfactory receptors converge their axons onto specific glomeruli, creating a spatial map in the brain. We have previously shown that second order projection neurons (PNs) in Drosophila are prespecified by lineage and birth order to send their dendrites to one of ~50 glomeruli in the antennal lobe. How can a given class of ORN axons match up with a given class of PN dendrites? Here, we examine the cellular and developmental events that lead to this wiring specificity. We find that, before ORN axon arrival, PN dendrites have already created a prototypic map that resembles the adult glomerular map, by virtue of their selective dendritic localization. Positional cues that create this prototypic dendritic map do not appear to be either from the residual larval olfactory system or from glial processes within the antennal lobe. We propose instead that this prototypic map might originate from both patterning information external to the developing antennal lobe and interactions among PN dendrites
    corecore